

CERTIFICATE
DEPARTMENT OF COMPUTER SCIENCE

This is certify that Mr. /Miss.__________________________

of F.Y. B.Sc.(Computer Science)Exam Seat No___________

has satisfactory completed his/her practicals in the _________

as laid down by the Savitribai Phule Pune University for the
academic Year_________________________________

Date:_____________

Total no. of Assignments::________

Completed Assignments::________

Subject Teacher Head of the Dept.

Internal Examiner External Examiner

 5

Lab course I
Exercise 1... ..100
To demonstrate use of data types, simple operators (expressions)
Exercise 2... ..103
To demonstrate decision making statements (if and if-else, nested structures)
Exercise 3... ..106
To demonstrate decision making statements (switch case)
Exercise 4... ..111
To demonstrate use of simple loops
Exercise 5... ..116
To demonstrate use of nested loops
Exercise 6... ..119
To demonstrate menu driven programs and use of standard library functions.
Exercise 7... ..122
To demonstrate writing C programs in modular way (use of user defined functions)
Exercise 8... ..125
To demonstrate recursive functions.
Exercise 9... ..128
To demonstrate use of arrays (1-d arrays) and functions
Exercise 10.. ...132
To demonstrate use of multidimensional array(2-d arrays) and functions
Exercise 11.. ..136
To demonstrate use of pointers
Exercise 12.. ..140
To demonstrate concept of strings (strings and pointers)
Exercise 13.. ..144
To demonstrate array of strings.
Exercise 14.. ..146
To demonstrate use of bitwise operators.
Exercise 15.. ..149
To demonstrate structures (using array and functions)
Exercise 16.. ..152
To demonstrate nested structures and Unions
Exercise 17.. ..157
To demonstrate command line arguments and preprocessor directives.
Exercise 18.. ..160
To demonstrate file handling (text files)
Exercise 19.. ..164
To demonstrate file handling (binary files and random access to files)
Exercise 20.. ..167
Problem solving using C

Appendix A- Guidelines for setting up the lab..172

References 180

 104

Lab Course I

 105

Exercise 1 Start Date

 / /

To demonstrate the use of data types, simple operat ors and expressions

You should read following topics before starting this exercise

1. Different basic data types in C and rules of declaring variables in C

2. Different operators and operator symbols in C

3. How to construct expressions in C, operator precedence

4. Problem solving steps- writing algorithms and flowcharts

1. Data type Table

Data Data

Format
C Data
Type

C Variable
declaration

Input Statement Output
statement

quantity
month
credit-
card
number

Numeric

int
Short
int
long int

int quantity;
short month;
long ccno;

scanf(“%d”,&quantity);
scanf(“%d”,&month);
scanf(“%ld”, &ccno);

printf(“The
quantity is %d”,
quantity);
printf(“The credit
card number is
%ld, ccno);

price
π

real

float
double

float price;
const double
pi=3.141593;

scanf(“%f”,&price); printf(“The price is
%5.2f”, price);

grade character char grade; scanf(“%c”,&grade) printf(“The grade
is %c”,grade);

2. Expression Examples

Expression C expression
Increment by a 3 a = a + 3
Decrement b by 1 b = b-1 or b--
 2 a2 + 5 b/2 2*a*a + 5*b/2
7/13(x-5) (float)7/13*(x-5)
5% of 56 (float)5/100*56
n is between 12 to 70 n>=12 && n<=70
πr2h Pi*r*r*h
n is not divisible by 7 n % 7 != 0
n is even n%2== 0
ch is an alphabet ch>=’A’ && ch<=’Z’ || ch>=’a’ && ch<=’z’
Note: The operators in the above expressions will be executed according to precedence and
associativity rules of operators.

3. Sample program- to calculate and print simple interest after accepting principal sum, number of
years and rate of interest.

 106

Program development steps

Step 1 : Writing
the Algorithm

Step 2 : Draw the
flowchart

Step 3 : Writing Program

1. Start
2. Accept

principal
sum, rate of
interest and
number of
years

3. Compute
Simple
interest

4. Output
Simple
Interest

5. Stop

/* Program to calculate simple interest */
#include <stdio.h>
main()
{ /* variable declarations */
 float amount, rateOfInterest, simpleInterest;
 int noOfYears;
 /* prompting and accepting input */
printf(“Give the Principal Sum”);
scanf(“%f”,&amount);
printf(“Give the Rate of Interest”);
scanf(“%f”,&rateOfInterest);
printf(“Give the Number of years”);
scanf(“%d”,&noOfYears);

/* Compute the simple Interest*/
simpleInterest=amount*noOfYears*rateOfInterest /
100;

/* Print the result*/
printf(“The simple Interest on amount %7.2f for %d
years at the rate %4.2f is %6.2f”, amount,
noOfYears, rateOfInterest, simpleInterest);
}

1. Type the sample program given above. Execute it for the different values as given below and

fill the last column from the output given by the program.
Follow the following guidelines
a. At $ prompt type vi followed by filename. The filename should have .c as extension for
example
$vi pnr.c
b. Type the sample program given above using vi commands and save it

 Compile the program using cc compiler available in Linux
 $cc pnr.c
 It will give errors if any or it will give back the $ prompt if there are no errors

A executable file a.out is created by the compiler in current directory. The program can be
executed by typing name of the file as follows giving the path.
$./a.out
Alternatively the executable file can be given name by using –o option while compiling as
follows
$cc pnr.c –o pnrexec
$./pnrexec
The executable file by specified name will be created. Note that you have to specify the path
of pnrexec as ./pnrexec , i. e., pnrexec in current (. Stands for current directory) directory
otherwise it looks for program by that name in the path specified for executable programs

Sr. No Principal sum No of years Rate of interest Simple Interest
1 2000 3 ____
2 4500 ___ 4.5
3 _____ 6 8.3

start

stop

Compute
Simple interest

Read ,principal
sum, rate and
no of years

Print Simple
Interest

 107

2. If you have not typed the program correctly,i.e., if there are syntactical errors in the program,
compiler will pinpoint the errors committed and are called compile-time errors. C compiler
gives line no along with error messages when it detects grammatical or syntactical errors in
the program. These messages are not so straightforward and you may find it difficult to
identify the error. You may miss a semicolon at the end of a statement and the compiler
points out error in the next statement. You may miss just a closing ‘*/’ of a comment and it will
show errors in several statements following it.
Another type of error which is quite common is the run-time or execution error. You are able
to compile the program successfully but you get run-time messages or garbage output when
you execute the program.
Modify the above program to introduce the following changes, compile, write the error
messages along with line numbers ,remove the error execute and indicate the type of error
whether it was compile-time or execution time error.

Modified line Error messages and line

numbers
Type of error

/* Program to calculate simple
interest

int noofYears;

scanf(“%f”,&amount)

scanf(“%f”, amount);

scanf(“%d”, noOfYears);

Signature of the instructor

Date

/ /

Set A . Apply all the three program development ste ps for the following examples.

� 1. Accept dimensions of a cylinder and print the surface area and volume (Hint: surface area =
2πr2 + 2πrh, volume = πr2h)

� 2. Accept temperatures in Fahrenheit (F) and print it in Celsius(C) and Kelvin (K) (Hint: C=5/9(F-
32), K = C + 273.15)

� 3. Accept initial velocity (u), acceleration (a) and time (t). Print the final velocity (v) and the
distance (s) travelled. (Hint: v = u + at, s = u + at2)

� 4. Accept inner and outer radius of a ring and print the perimeter and area of the ring (Hint:
perimeter = 2 π (a+b) , area = π (a2-b2))

� 5. Accept two numbers and print arithmetic and harmonic mean of the two numbers (Hint: AM=
(a+b)/2 , HM = ab/(a+b))

� 6. Accept three dimensions length (l), breadth(b) and height(h) of a cuboid and print surface
area and volume (Hint : surface area=2(lb+lh+bh), volume = lbh)

� 7. Accept a character from the keyboard and display its previous and next character in order.
Ex. If the character entered is ‘d’, display “The previous character is c”, “The next character is e”.

� 8. Accept a character from the user and display its ASCII value.

Signature of the instructor

Date

/ /

Set B . Apply all the three program development ste ps for the following examples.

 108

� 1. Accept the x and y coordinates of two points and compute the distance between the two
points.

� 2. Accept two integers from the user and interchange them. Display the interchanged numbers.

� 3. A cashier has currency notes of denomination 1, 5 and 10. Accept the amount to be
withdrawn from the user and print the total number of currency notes of each denomination the
cashier will have to give.

Signature of the instructor

Date

/ /

Set C. Write a program to solve the following prob lems

� 1. Consider a room having one door and two windows both of the same size. Accept
dimensions of the room, door and window. Print the area to be painted (interior walls) and area to
be whitewashed (roof).

� 2. The basic salary of an employee is decided at the time of employment, which may be
different for different employees. Apart from basic, employee gets 10% of basic as house rent,
30% of basic as dearness allowance. A professional tax of 5% of basic is deducted from salary.
Accept the employee id and basic salary for an employee and output the take home salary of the
employee.

.
Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 109

Exercise 2 Start Date

 / /

To demonstrate use of decision making statements su ch as if and if-else.

You should read following topics before starting this exercise

1. Different types of decision-making statements available in C.

2. Syntax for these statements.

During problem solving, we come across situations when we have to choose one of the
alternative paths depending upon the result of some condition. Condition is an expression
evaluating to true or false. This is known as the Branching or decision-making statement. Several
forms of If and else constructs are used in C to support decision-making.

1) if statements
2) if – else
3) Nested if

Note: If there are more than one statement in the if or else part, they have to be enclosed in { }
braces

Sr.
No

Statement
Syntax

Flowchart Example

1. if statement

if (condition)
{
 statement;
}

if(n > 0)
 printf(“Number
is positive”);

2. if - else
statement

if (condition)
 {
 statement;
}
else
{
 statement;
}

if(n % 2 == 0)
 printf(“Even”);
else
 printf(“Odd”);

False If
condition ?

 statement

New statement

True

False If
condition ?

 statement

New statement

True

 statement

 110

3. Nested if

if (condition)
 {
 if (condition)
 { statement;}
else
{ statement;}

}
else
{
 if (condition)
 { statement; }
else
{ statement; }

}

If (a >= b)
 { if (a >= c)
 printf(“ %d is
maximum”,a);
 else
printf(“ %d is
maximum”,c);
}
else
{
if (b >= c)
 printf(“ %d is
maximum”,b);
 else
printf(“ %d is
maximum”,c);
}

4. Sample program- to check whether a number is within range.

Step 1: Writing the
Algorithm

Step 2 : Draw the flowchart

Step 3 : Writing Program

1. Start
2. Accept the number
3. Check if number is
within range
4. if true
 print “Number is
within range “
 otherwise
 print “number is out
of range”.
5. Stop

 /* Program to check range */

#include <stdio.h>
main()
{ /* variable declarations */
 int n;
int llimit=50, ulimit = 100;
 /* prompting and accepting input */
printf(“Enter the number”);
scanf(“%d”,&n);
if(n>=llimit && n <= ulimit)
 printf(“Number is within range”);
else
 printf(“Number is out of range”);
}

b>= c

c is
max

b is
max

True False

True False

start

stop

Read
number

Number is
within range

If(n in range)

True

Number is out
of range

False

a>=b

a>=c

c is
max

a is
max

True

False

 111

� 1. Execute the following program for five different values and fill in the adjoining table

main()
{
int n;

 printf(“Enter no.”);
 scanf(“%d”,&n);
 if(n%___==0)
 printf(“divisible);
else
 printf(“not divisible”);

}

n output

� 2. Type the above sample program 4 and execute it for the following values.

n Output message
50
100
65

� 3. Using the sample code 3 above write the complete program to find the maximum of three
numbers and execute it for different set of values.

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Set A: Apply all the three program development step s for the following examples.

� 1. Write a program to accept an integer and check if it is even or odd.

� 2. Write a program to accept three numbers and check whether the first is between the other
two numbers. Ex: Input 20 10 30. Output: 20 is between 10 and 30

� 3. Accept a character as input and check whether the character is a digit. (Check if it is in the
range ‘0’ to ‘9’ both inclusive)

� 4. Write a program to accept a number and check if it is divisible by 5 and 7.

� 5. Write a program, which accepts annual basic salary of an employee and calculates and
displays the Income tax as per the following rules.

Basic: < 1,50,000 Tax = 0

 1,50,000 to 3,00,000 Tax = 20%

 > 3,00,000 Tax = 30%

� 6. Accept a lowercase character from the user and check whether the character is a vowel or
consonant. (Hint: a,e,i,o,u are vowels)

Signature of the instructor

Date

/ /

 112

Set B: Apply all the three program development step s for the following examples.

� 1. Write a program to check whether given character is a digit or a character in lowercase or
uppercase alphabet. (Hint ASCII value of digit is between 48 to 58 and Lowercase characters
have ASCII values in the range of 97 to122, uppercase is between 65 and 90)

� 2. Accept the time as hour, minute and seconds and check whether the time is valid. (Hint:
0<=hour<24, 0<=minute <60, 0<=second <60)

� 3. Accept any year as input through the keyboard. Write a program to check whether the year is
a leap year or not. (Hint leap year is divisible by 4 and not by 100 or divisible by 400)

� 4. Accept three sides of triangle as input, and print whether the triangle is valid or not. (Hint:
The triangle is valid if the sum of each of the two sides is greater than the third side).

� 5. Accept the x and y coordinate of a point and find the quadrant in which the point lies.

� 6. Write a program to calculate the roots of a quadratic equation. Consider all possible cases.
� 7. Accept the cost price and selling price from the keyboard. Find out if the seller has made a
profit or loss and display how much profit or loss has been made.

Signature of the instructor

Date

/ /

Set C: Write programs to solve the following proble ms

� 1. Write a program to accept marks for three subjects and find the total marks secured ,
average and also display the class obtained. (Class I – above __%, class II – ___% to ___%,
pass class – ___% to ___% and fail otherwise)

� 2. Write a program to accept quantity and rate for three items, compute the total sales amount,
Also compute and print the discount as follows: (amount > ____– 20% discount, amount between
___ to _____ -- 15% discount, amount between – ____ to ____ -- 8 % discount)

� 3. A library charges a fine for every book returned late. Accept the number of days the member
is late, compute and print the fine as follows:(less than five days Rs ___ fine, for 6 to 10 days Rs.
____ fine and above 10 days Rs. ___ fine)

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 113

Exercise 3 Start Date

 / /

To demonstrate decision making statements (switch c ase)

You should read following topics before starting this exercise

1. Different types of decision-making statements available in C.

2. Syntax for switch case statements.

The control statement that allows us to make a decision from the number of choices is called a
switch-case statement. It is a multi-way decision making statement.

1. Usage of switch statement

Statement Syntax Flowchart Example

switch(expression)
{
case value1: block1;
 break;
case value2: block2;
 break;
.
.
.
default : default block;
 break;
}

switch (color)
{
 case ’r’ :
 case ’R’ :
 printf (“RED”);
 break;
 case ’g’ :
 case ’G’ :
 printf (“GREEN”);
 break;
 case ’b’ :
 case ’B’ :
 printf (“BLUE”);
 break;
 default :
 printf (“INVALID
COLOR”);
}

case 1 Block 1 True

case 4

case 2

case 3

 start

 stop

 Default Block

 Block 2

 Block 3

 Block 4

 True

True

True

False

False

False

False

 114

2. The switch statement is used in writing menu driven programs where a menu displays several

options and the user gives the choice by typing a character or number. A Sample program to
display the selected option from a menu is given below.

Step 1:
Writing the
Algorithm

Step 2: Draw the flowchart

Step 3: Writing Program

1. Start
2. Display the
menu options
3. Read choice
4. Execute

statement
block
depending
on choice

5. Stop

 /* Program using switch case and
menu */

#include <stdio.h>
main()
{ /* variable declarations */
 int choice;
 /* Displaying the Menu */
printf(“\n 1. Option 1\n”);
printf(“ 2. Option 2\n”);
printf(“ 3. Option 3\n”);
printf(“Enter your choice”);
scanf(“%d”,&choice);
switch(choice)
{
 case 1:
 printf(“Option 1 is selected”);
 break;
 case 2:
 printf(“Option 2 is selected”);
 break;
case 3:
 printf(“Option 3 is selected”);
 break;
default:
 printf(“Invalid choice”);
}
}

1. Write the program that accepts a char–type variable called color and displays appropriate
message using the sample code 1 above. Execute the program for various character values and
fill in the following table. Modify the program to include all rainbow colours

Input character Output Message
V
I
B
G
R

Signature of the instructor

Date

/ /

start

stop

Read choice

Display
Options

case 1 Statement 1 True

case 2

case 3

Statement 2

Statement 3

 True

True

False

False

Default statement

True False

 115

Set A: Apply all the three program development step s for the following examples.

� 1. Accept a single digit from the user and display it in words. For example, if digit entered is 9,
display Nine.

� 2. Write a program, which accepts two integers and an operator as a character (+ - * /),
performs the corresponding operation and displays the result.

� 3. Accept two numbers in variables x and y from the user and perform the following operations

Options Actions
1. Equality Check if x is equal to y
2. Less Than Check if x is less than y
3. Quotient and Remainder Divide x by y and display the quotient and remainder
4. Range Accept a number and check if it lies between x and y

(both inclusive)
5. Swap Interchange x and y

Signature of the instructor

Date

/ /

Set B: Apply all the three program development step s for the following examples.

� 1. Accept radius from the user and write a program having menu with the following options and
corresponding actions

Options Actions
1. Area of Circle Compute area of circle and print
2. Circumference of Circle Compute Circumference of circle and print
3. Volume of Sphere Compute Volume of Sphere and print

� 2. Write a program having a menu with the following options and corresponding actions

Options Actions
1. Area of square Accept length ,Compute area of square and print
2. Area of Rectangle Accept length and breadth, Compute area of rectangle

and print
3. Area of triangle Accept base and height , Compute area of triangle and

print

Signature of the instructor

Date

/ /

 116

Set C: Write a program to solve the following probl ems

� 1. Accept the three positive integers for date from the user (day, month and year) and check
whether the date is valid or invalid. Run your program for the following dates and fill the table.
(Hint: For valid date 1<=month<=12,1<= day <=no-of-days where no-of-days is 30 in case of
months 4, 6,9 and 11. 31 in case of months 1,3,5,7,8,10 and 12. In case of month 2 no-of-days is
28 or 29 depending on year is leap or not)

Date Output

12-10-1984
32-10-1920
10-13-1984
29-2-1984
29-2-2003
29-2-1900

� 2. Write a program having menu that has three options - add, subtract or multiply two fractions.
The two fractions and the options are taken as input and the result is displayed as output. Each
fraction is read as two integers, numerator and denominator.

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 117

Exercise 4 Start Date

 / /

To demonstrate use of simple loops.

You should read following topics before starting this exercise

1. Different types of loop structures in C.

2. Syntax and usage of these statements.

We need to perform certain actions repeatedly for a fixed number of times or till some condition
holds true. These repetitive operations are done using loop control statements. The types of loop
structures supported in C are

1. while statement
2. do-while statement
3. for statement

Sr.
No

Statement S yntax Flowchart Example

1. while statement

while (condition)
 {
 statement 1;
 statement 2;

 .
 .

 }

/* accept a number*/
scanf(“%d”, &n);
/* if not a single digit */
while (n > 9)
{
/* remove last digit
 n = n /10;
}

2. do-while statement

do
{
 statement 1;
 statement 2;
 .
 .
} while (condition);

/*initialize sum*/
sum =0;
do
{/* Get a number */
printf(“ give number”};
scanf(“%d”,&n);
/* add number to sum*/
sum=sum+n;
} while (n>0);
printf (“sum is %d”, sum);

True

False

Test
Condition

Loop Body

True

False

Test
Condition

Loop Body

 118

3. for statement

for(expr1; expr2; expr3)
{
 statement 1

 .
 .

}
expr1 = initialization
expression
expr2 = loop condition
expr3 = alteration
expression which alters
the loop variable

/* display first 10 multiples
of 2 */
for(i=1; i <= 10; i++)
{
 printf (“2 X %d = %d\n”, i,
2*i);
}

Note: Usually the for loop is used when the statements have to executed for a fixed number of
times. The while loop is used when the statements have to be executed as long as some
condition is true and the do-while loop is used when we want to execute statements atleast once
(example: menu driven programs)

3. Sample program- to print sum of 1+2+3+…..n.

Step 1: Writing
the Algorithm

Step 2: Draw the flowchart Step 3: Writing Program

1. Start
2. Initialize sum to
0.
3. Accept n.
4. Compute
sum=sum+n
5. Decrement n by
1
6. if n > 0
 go to step 4
7. Display value of
sum.
8. Stop

/* Program to calculate sum of
numbers */

#include <stdio.h>
main()
{ /* variable declarations */
 int sum = 0, n;
 printf(“enter the value of n : “);
 scanf(“%d”,&n);
 while (n>0)
 {
 sum = sum + n;
 n--;
 }
 printf(“\n The sum of numbers is
%d”, sum);
}

True

False

Test
expr2

expr1

Loop Body

Expr3

start

stop

Compute
Sum=sum+n

Read n

Print value
of sum

 n>0 True

False

Sum = 0

 119

4. Sample program- To read characters till EOF (Ctrl+Z) and count the total number of characters
entered.

Step 1 : Writing
the Algorithm

Step 2 : Draw the flowchart

Step 3 : Writing Program

1. Start
2. Initialize count
to 0.
3. Accept ch.
4. If ch !=EOF
 Count = count
+1
 Else
 Go to step 6
5. Go to step 3
7. Display value of
sum.
8. Stop

/* Program to count number of characters
*/

#include <stdio.h>
main()
{

char ch;
int count=0;
while((ch=getchar())!=EOF)
 count++;

printf(“Total characters = %d”, count);

}

� 1. Write a program that accepts a number and prints its first digit. Refer sample code 1 given
above. Execute the program for different values.

� 2. Write a program that accepts numbers continuously as long as the number is positive and
prints the sum of the numbers read. Refer sample code 2 given above. Execute the program for
different values.

� 3. Write a program to accept n and display its multiplication table. Refer to sample code 3 given
above.

� 4. Type the sample program to print sum of first n numbers and execute the program for
different values of n.
� 5. Write a program to accept characters till the user enters EOF and count number of times ‘a’
is entered. Refer to sample program 5 given above.

Signature of the instructor

Date

/ /

start

stop

Count = count+1

Read ch

Print count

 False

count = 0

Ch=EOF
?

True

 120

Set A . Apply all the three program development ste ps for the following examples.

� 1. Write a program to accept an integer n and display all even numbers upto n.

� 2. Accept two integers x and y and calculate the sum of all integers between x and y (both
inclusive)

� 3. Write a program to accept two integers x and n and compute xn

� 4. Write a program to accept an integer and check if it is prime or not.

� 5. Write a program to accept an integer and count the number of digits in the number.

� 6. Write a program to accept an integer and reverse the number. Example: Input: 546, Output
645.

� 7. Write a program to accept a character, an integer n and display the next n characters.

Signature of the instructor

Date

/ /

Set B. Apply all the three program development step s for the following examples.

� 1. Write a program to display the first n Fibonacci numbers. (1 1 2 3 5 ……)

� 2. Write a program to accept real number x and integer n and calculate the sum of first n terms
of the series x+ 3x+5x+7x+…

� 3. Write a program to accept real number x and integer n and calculate the sum of first n terms

of the series
x

1
 + 2

2
x

 + 3

3
x

+ ……

� 4. Write a program to accept characters till the user enters EOF and count number of alphabets
and digits entered. Refer to sample program 5 given above.

� 5. Write a program, which accepts a number n and displays each digit in words. Example: 6702
Output = Six-Seven-Zero-Two. (Hint: Reverse the number and use a switch statement)

Signature of the instructor

Date

/ /

Set C. Write C programs to solve the following pro blems

� 1. Write a program to accept characters from the user till the user enters * and count the
number of characters, words and lines entered by the user. (Hint: Use a flag to count words.
Consider delimiters like \n \t , ; . and space for counting words)

� 2. Write a program which accepts a number and checks if the number is a palindrome (Hint
number = reverse of number)
Example: number = 3472 Output: It is not a palindrome
 number = 262, Output : It is a palindrome

� 3. A train leaves station A at 4.00 a.m and travels at 80kmph. After every 30 minutes, it reaches
a station where it halts for 10 minutes. It reaches its final destination B at 1.00 p.m. Display a
table showing its arrival and departure time at every intermediate station. Also calculate the total
distance between A and B.

 121

� 4. A task takes 4 ½ hours to complete. Two workers, A and B start working on it and take turns
alternately. A works for 25 minutes at a time and is paid Rs 50, B works for 75 minutes at a time
and is paid Rs. 150. Display the total number of turns taken by A and B, calculate their total
amounts and also the total cost of the task.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 122

Exercise 5 Start Date

 / /

To demonstrate use of nested loops

In the previous exercise, you used while, do-while and for loops. You should read following topics
before starting this exercise

1. Different types of loop structures in C.

2. Syntax for these statements.

3. Usage of each loop structure

Nested loop means a loop that is contained within another loop. Nesting can be done upto any
levels. However the inner loop has to be completely enclosed in the outer loop. No overlapping of
loops is allowed.

Sr.
No

Format Sample Program

1. Nested for loop

for(exp1; exp2 ; exp3)
{ ……………………
 for(exp11; exp12 ; exp13)
 { ……………………
 }
 …………………….
}

/* Program to display triangle of numbers*/

#include <stdio.h>
void main()
{
 int n , line_number , number;
 printf(“How many lines: ”);
 scanf(“%d”,&n);
 for(line_number =1 ;line_number <=n;
line_number++)
 {
 for(number = 1; number <= line_number;
number++)
 printf (“%d\t”, number);
 printf (“\n”);
 }
}

2. Nested while loop / do while loop

while(condition1)
{ ……………………
while(condition2)
 { ……………………
 }
 …………………….
}

do
{ ……………………
 while(condition1)
 { ………………..
 }

/* Program to calculate sum of digits till
sum is a single digit number */

#include <stdio.h>
void main()
{
 int n , sum;
 printf(“Give any number ”);
 scanf(“%d”,&n);
do
{
 sum =0;
 printf(“%d --->”,n);
 while (n>0)
 { sum +=n%10;

 123

……………….
} while (condition2);

 n= n/10;
 }
n=sum;
} while(n >9);
printf (“ %d” , n);
}

Note: It is possible to nest any loop within another. For example, we can have a for loop inside a
while or do while or a while loop inside a for.

� 1. The Sample program 1 displays n lines of the following triangle. Type the program and
execute it for different values of n.

1
1 2
1 2 3
1 2 3 4

� 2. Modify the sample program 1 to display n lines of the Floyd’s triangle as follows (here n=4).

1
2 3
4 5 6
7 8 9 10

� 3. The sample program 2 computes the sum of digits of a number and the process is repeated
till the number reduces to a single digit number. Type the program and execute it for different
values of n and give the output

Input number Output
6534
67
8
567

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Write a program to display all prime numbers between ____ and ____.

� 2. Write a program to display multiplication tables from ___ to ___ having n multiples each. The
output should be displayed in a tabular format. For example, the multiplication tables of 2 to 9
having 10 multiples each is shown below.

 2 × 1 = 2 3 × 1 = 3 ………….9 × 1 = 9
 2 × 2 = 4 3 × 2 = 6…………..9 × 2 = 18

 …………. ………….
 2 × 10 = 20 3 × 10 = 30………..9 × 10 = 90

� 3. Modify the sample program 1 to display n lines as follows (here n=4).

A B C D
 E F G
 H I
 J

 124

Signature of the instructor

Date

/ /

Set B. Write C programs for the following problems.

� 1. Write a program to display all Armstrong numbers between 1 and 500. (An Armstrong
number is a number such that the sum of cube of digits = number itself Ex. 153 = 1*1*1 + 5*5*5
+ 3*3*3

� 2. Accept characters till the user enters EOF and count the number of lines entered. Also
display the length of the longest line. (Hint: A line ends when the character is \n)

� 3. Display all perfect numbers below 500. [A perfect number is a number, such that the sum of
its factors is equal to the number itself]. Example: 6 (1 + 2 + 3), 28 (1+2+4+7+14)

Signature of the instructor

Date

/ /

Set C. Write C programs to solve the following pro blems

� 1. A company has four branches, one in each zone: North, South, East and West. For each of
these branches, it collects sales information once every quarter (four months) and calculates the
average sales for each zone. Write a program that accepts sales details for each quarter in the
four branches and calculate the average sales of each branch.

� 2. A polynomial in one variable is of the form a0 + a1x + a2x
2 + …. For example, 6 - 9x + 2x5.

Write a program to calculate the value of a polynomial. Accept the number of terms n , the value
of x, and n+1coefficients.

� 3. The temperature of a city varies according to seasons. There are four seasons – spring,
summer, Monsoon and winter. The temperature ranges are: Spring (15-25 degrees), Summer
(25-40 degrees), Monsoon (20-35 degrees), Winter (5-20 degrees). Accept weekly temperatures
(12 weeks per season) for each season, check if they are in the correct range and calculate the
average temperature for each season.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 125

Exercise 6 Start Date

 / /

To demonstrate menu driven programs and use of stan dard library functions

You should read following topics before starting this exercise

1. Use of switch statement to create menus as in exercise 3

2. Use of while and do while loops as in exercise 4

A function is a named sub-module of a program, which performs a specific, well-defined task. It
can accept information from the calling function in the form of arguments and return only 1 value.
C provides a rich library of standard functions. We will explore some such function libraries and
use these functions in our programs.

ctype.h : contains function prototypes for performing various operations on characters. Some
commonly used functions are listed below.

Function Name Purpose Example
isalpha Check whether a character is a alphabet if (isalpha(ch))
isalnum Check whether a character is alphanumeric if (isalnum(ch))
isdigit Check whether a character is a digit if (isdigit(ch))
isspace Check whether a character is a space if (isspace(ch))
ispunct Check whether a character is a punctuation

symbol
if (ispunct(ch))

isupper Check whether a character is uppercase alphabet if (isupper(ch))
islower Check whether a character is lowercase alphabet if (isupper(ch))
toupper Converts a character to uppercase ch = toupper(ch)
tolower Converts a character to lowercase ch = tolower(ch)

math.h : This contains function prototypes for performing various mathematical operations on
numeric data. Some commonly used functions are listed below.

Note: If you want to use any of the above functions you must include the library for example
#include <ctype.h>
#include <math.h>
In case of math library , it needs to be linked to your program. You have to compile the program
as follows
$ cc filename -lm

Function Name Purpose Example
cos cosine a*a+b*b – 2*a*b*cos(abangle)
exp(double x) exponential function, computes ex exp(x)
log natural logarithm c= log(x)
log10 base-10 logarithm y=log10(x)
pow(x,y) compute a value taken to an

exponent, xy
y = 3*pow(x , 10)

sin sine z= sin(x) / x
sqrt square root delta=sqrt(b*b – 4*a*c)

 126

A program that does multiple tasks, provides a menu from which user can choose the appropriate
task to be performed. The menu should appear again when the task is completed so that the user
can choose another task. This process continues till the user decides to quit. A menu driven
program can be written using a combination of do-while loop containing a switch statement. One
of the options provided in a menu driven program is to exit the program.

Statement Syntax Flowchart Example
do
{
 display menu;
 accept choice;
switch(choice)
{
case value1:
block1;

break;
case value2:
block2;

break;
.
.
.
default : default
block;
 }
}while(choice !=
exit);

ch = getchar() ;
do
{
 pr in t f (“ \n 1: ISUPPER ”) ;
 pr in t f (“ \n 2: ISLOW ER ”) ;
 pr in t f (“ \n 3: ISDIGIT “) ;
 pr in t f (“ \n 4: EXIT”) ;

 pr in t f (“Enter your choice
:”) ;
 scanf(“%d” , &choice) ;

 swi tch (choice)
 {
 case 1: i f (isupper(ch))

pr in t f (“Uppercase”) ;
 break;
 case 2: i f (is lower(ch))

pr in t f (“Lowercase”) ;
 break;
 case 3: i f (isd ig i t(ch))
 pr in t f (“Dig it”) ;
 break;
 }
}whi le (choice!=4) ;

1. Write a menu driven program to perform the following operations on a character type variable.

i. Check if it is an alphabet
ii. Check if it is a digit.
iii. Check if it is lowercase.
iv. Check if it is uppercase.
v. Convert it to uppercase.
vi. Convert it to lowercase.

Refer to the sample code given above and use standard functions from ctype.h

Set A . Write C programs for the following problems

� 1. Write a program, which accepts a character from the user and checks if it is an alphabet, digit
or punctuation symbol. If it is an alphabet, check if it is uppercase or lowercase and then change
the case.

case 1 block1 True

case 2

 start

 stop

default block

block 2
True

False

False

Display menu

Accept choice

choice=exit
?

True

False

 127

� 2. Write a menu driven program to perform the following operations till the user selects Exit.
Accept appropriate data for each option. Use standard library functions from math.h
i. Sine ii. Cosine iii. log iv. ex v. Square Root vi. Exit

� 3. Accept two complex numbers from the user (real part, imaginary part). Write a menu driven
program to perform the following operations till the user selects Exit.
i. ADD ii. SUBTRACT iii. MULTIPLY iv. EXIT

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems

� 1. Accept x and y coordinates of two points and write a menu driven program to perform the
following operations till the user selects Exit.

i. Distance between points.
ii. Slope of line between the points.
iii. Check whether they lie in the same quadrant.
iv. EXIT

(Hint: Use formula m = (y2-y1)/(x2-x1) to calculate slope of line.)

� 2. Write a simple menu driven program for a shop, which sells the following items:
The user selects items using a menu. For every item selected, ask the quantity. If the quantity of
any item is more than 10, give a discount of _____%. When the user selects Exit, display the
total amount.

Item Price

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems

� 1. Write a program to calculate the total price for a picnic lunch that a user is purchasing for her
group of friends. She is first asked to enter a budget for the lunch. She has the option of buying
apples, cake, and bread. Set the price per kg of apples, price per cake, and price per loaf of bread
in constant variables. Use a menu to ask the user what item and how much of each item she
would like to purchase. Keep calculating the total of the items purchased. After purchase of an
item, display the remaining amount. Exit the menu if the total has exceeded the budget. In
addition, provide an option that allows the user to exit the purchasing loop at any time.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 128

Exercise 7 Start Date

 / /

To demonstrate writing C programs in modular way (u se of user defined functions)

You should read following topics before starting this exercise

1. Declaring and Defining a function
2. Function call
3. Passing parameters to a function
4. Function returning a value

You have already used standard library functions. C allows to write and use user defined
functions. Every program has a function named main. In main you can call some functions which
in turn can call other functions.

The following table gives the syntax required to write and use functions
Sr.
No

Actions involving
functions

Syntax Exampl e

1. Function declaration returntype function(type arg1,
type arg2 …);

void display();
int sum(int x, int y);

2. Function definition returntype function(type arg1,
type arg2 …)
{
 /* statements*/
}

float calcarea (float r)
{
 float area = Pi *r*r ;
 return area;
}

3. Function call function(arguments);
variable = function(arguments);

display();
ans = calcarea(radius);

1. Sample code

The program given below calculates the area of a circle using a function and uses this function to
calculate the area of a cylinder using another function.

 /* Program to calculate area of circle and cylinder using function */

#include <stdio.h>
void main()
{
 float areacircle (float r);
 float areacylinder(float r, int h);
 float area, r;
 printf(“\n Enter Radius: “);
 scanf(“%f”,&r);

 area=areacircle(r);

printf(“\n Area of circle =%6.2f”, area);

 printf(“\n Enter Height: “);

 129

 scanf(“%d”,&h);
 area=areacylinder(r,h);

printf(“\n Area of cylinder =%6.2f”, area);
}

float areacircle (float r)
{
 const float pi=3.142;

return(pi * r*r);
}
float areacylinder (float r, int h)
{
 return 2*areacircle(r)*h;

 }

2. Sample code

The function iswhitespace returns 1 if its character parameter is a space, tab or newline
character. The program accepts characters till the user enters EOF and counts the number of
white spaces.

 /* Program to count whitespaces using function */

#include <stdio.h>
void main()
{
 int iswhitespace (char ch);
 char ch;
 int count=0;

 printf(“\n Enter the characters. Type CTRL +Z to terminate: “);
 while((ch=getchar())!=EOF)
 if(iswhitespace(ch))
 count++;

printf(“\n The total number of white spaces =%d”, count);
}
int iswhitespace (char ch)
{

switch(ch)
{
 case ‘ ‘:
 case ‘\t’ :
 case ‘\n’ : return 1;
 default : return 0;
 }

}

� 1. Type the program given in sample code 1 above and execute the program. Comment
function declarations and note down the type of error and the error messages received. Add
another function to calculate the volume of sphere and display it.

� 2. Type the program given in sample code 2 above and execute the program. Comment
function declaration and note down the type of error and the error messages received. Modify the
function such that it returns 1 if the character is a vowel. Also count the total number of vowels
entered.

 130

Set A . Write C programs for the following problems

� 1. Write a function isEven, which accepts an integer as parameter and returns 1 if the number is
even, and 0 otherwise. Use this function in main to accept n numbers and ckeck if they are even
or odd.

� 2. Write a function, which accepts a character and integer n as parameter and displays the next
n characters.

� 3. Write a function, which accepts a character and integer n as parameter and displays the next
n characters.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems

� 1. Write a function isPrime, which accepts an integer as parameter and returns 1 if the number
is prime and 0 otherwise. Use this function in main to display the first 10 prime numbers.

� 2. Write a function that accepts a character as parameter and returns 1 if it is an alphabet, 2 if it
is a digit and 3 if it is a special symbol. In main, accept characters till the user enters EOF and use
the function to count the total number of alphabets, digits and special symbols entered.

� 3. Write a function power, which calculates xy. Write another function, which calculates n! Using
for loop. Use these functions to calculate the sum of first n terms of the Taylor series:

sin(x) = x -
!3

3x
 +

!5

5x
+ ……

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems

� 1. Write a menu driven program to perform the following operations using the Taylor series.
Accept suitable data for each option. Write separate functions for each option.

i. ex

ii. sin(x)

iii. cos (x)

Define separate functions to calculate xy and n! and use them in each function.

Signature of the instructor

Date

/ /

Assignment Evaluation Sign ature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 131

Exercise 8 Start Date

 / /

To demonstrate Recursion.

You should read the following topics before starting this exercise

1. Recursive definition

2. Declaring and defining a function

3. How to call a function

4. How to pass parameters to a function

Recursion is a process by which a function calls itself either directly or indirectly. The points to be
remembered while writing recursive functions
i. Each time the function is called recursively it must be closer to the solution.
ii. There must be some terminating condition, which will stop recursion.
iii. Usually the function contains an if –else branching statement where one branch makes

recursive call while other branch has non-recursive terminating condition
Expressions having recursive definitions can be easily converted into recursive functions

Sr.
No

Recursive definition Recursive Function Sample program

1. The recursive definition
for factorial is given
below:

n!= 1 if n = 0 or 1
 = n * (n-1)! if n > 1

long int factorial (int n)
{
 If (n==0)||(n==1))
/* terminating condition */
 return(1);
 else
 return(n* factorial(n-
1));
 /* recursive call */
}

#include <stdio.h>
main()
{
int num;
/* function declaration */
long int factorial(int n);
printf(“\n enter the
number:”);
scanf(“%d”,&num);
printf(“\n The factorial of
%d is
%ld”,num,factorial(num));
}
/* function code*/

2. The recursive definition
for nCr (no of
combinations of r objects
out of n objects) is as
follows
nCn = 1
nC0 = 1
nCr = n-1Cr + nCr-1

long int nCr(int n, int r)
{ if(n==r || r==0)
/* terminating condition */
 return(1);
 else
 return (nCr(n-1,r) +
nCr(n, r-1));
 /* recursive call */
}

#include <stdio.h>
/* function code*/
main()
{
int n, r;
printf(“\n enter the total
number of objects:”);
scanf(“%d”,&n);
printf(“\n enter the number
of objects to be selected”);
scanf(“%d”,&r);
printf(“\n The value
%dC%d is %ld”,n, r,
nCr(n,r));
}

 132

� 1. Write the sample program 1 given above and execute the program. Modify the program to
define a global integer variable count and increment it in factorial function. Add a printf statement
in main function for variable count. Execute the program for different values and fill in the
following table.

Sr. No. num factorial Count
1. 0
2 1
3 5
4 __
5 ___

� 2. Write the sample program 2 given above and execute the program for different values of n
and r. Modify the program to define a global integer variable count and increment it in nCr
function. Add a print statement in main function for variable count. Execute the program for
different values and fill in the following table

Sr. No. n r nCr Count
1. 5 0
2 5 5
3 5 2
4 5 __
5 ___ __

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems

� 1. Write a recursive C function to calculate the sum of digits of a number. Use this function in
main to accept a number and print sum of its digits.

� 2. Write a recursive C function to calculate the GCD of two numbers. Use this function in main.

The GCD is calculated as :

gcd(a,b) = a if b = 0

 = gcd (b, a mod b) otherwise

� 3. Write a recursive function for the following recursive definition. Use this function in main to
display the first 10 numbers of the following series

an = 3 if n = 1 or 2

 = 2* an-1 + 3*an-2 if n > 2

� 4. Write a recursive C function to calculate xy. (Do not use standard library function)

Signature of the instructor

Date

/ /

 133

Set B . Write C programs for the following problems

� 1. Write a recursive function to calculate the nth Fibonacci number. Use this function in main to
display the first n Fibonacci numbers. The recursive definition of nth Fibonacci number is as
follows:
 fib(n) = 1 if n = 1 or 2
 = fib(n-2) + fib(n-1) if n>2

� 2. Write a recursive function to calculate the sum of digits of a number till you get a single digit
number. Example: 961 -> 16 -> 5. (Note: Do not use a loop)

� 3. Write a recursive C function to print the digits of a number in reverse order. Use this function
in main to accept a number and print the digits in reverse order separated by tab.

 Example 3456

6 5 4 3

(Hint: Recursiveprint(n) = print n if n is single digit number

 = print n % 10 + tab + Recursiveprint(n/10)

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems

� 1. The “Towers of Hanoi” problem: The objective is to move a set of disks arranged in
increasing sizes from top to bottom from the source pole to a destination pole such that they are
in the same order as before using only one intermediate pole subject to the condition that

• Only one disk can be moved at a time
• A bigger disk cannot be placed on a smaller disk.

Write a recursive function which displays all the steps to move n disks from A to C.

1

disks

Source
Needle

(A)

Intermediate
needle

(B)

Destination
Needle

(C)

2
3
4
5

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 134

Exercise 9 Start Date

 / /

To demonstrate use of 1-D arrays and functions.

You should read the following topics before starting this exercise

1. What are arrays and how to declare an array?

2. How to enter data in to array and access the elements of an array.

3. How to initialize an array and how to check the bounds of an array?

4. How to pass an array to a function

An array is a collection of data items of the same data type referred to by a common name. Each
element of the array is accessed by an index or subscript. Hence, it is also called a subscripted
variable.

Actions involving
arrays

syntax Example

Declaration of array

data-type array_name[size]; int temperature[10];
float pressure[20];

Initialization of array data-type array_name[]={element1,
element2, ……, element n};

data-type
array_name[size]={element-1,
element-2, ……, element-size};

You cannot give more number of
initial values than the array size. If
you specify less values, the
remaining will be initialized to 0.

int marks[]={45,57,87,20,90};
marks[3] refers to the fourth
element which equals 20

int count[3]={4,2,9};
count[2] is the last element 9
while 4 is count[0]

Accessing elements of
an array

The array index begins from 0
(zero) To access an array element,
we need to refer to it as
array_name[index].

Value = marks[3];
This refers to the 4th element
in the array

Entering data into an
array.

 for (i=0; i<=9; i++)
 scanf(“%d”, &marks[i]);

Printing the data from
an array

 for(i=0; i<=9; i++)
 printf(“%d”, marks[i]);

Arrays and function

We can pass an array to a function
using two methods.
1. Pass the array element by
element
2. Pass the entire array to the
function

/* Passing the whole array*/
void modify(int a[5])
{
 int i;
 for(i=0; i<5 ; i++)

 a[i] = i;
}

 135

Sample program to find the largest element of an array

/* Program to find largest number from array */

#include<stdio.h>
int main()
{
 int arr[20]; int n;
 void accept(int a[20], int n);
 void display(int a[20], int n);
 int maximum(int a[20], int n);

 printf(”How many numbers :”);
 scanf(“%d”, &n);
 accept(arr,n);
 display(arr,n);
 printf(“The maximum is :%d” , maximum(arr,n));
}

void accept(int a[20], int n)
{
 int i;
 for(i=0; i<n ; i++)

 scanf(“%d”, &a[i]);
}

void display(int a[20], int n)
{
 int i;
 for(i=0; i<n ; i++)

 printf(“%d\t”, a[i]);
}
int maximum(int a[20], int n)
{
 int i, max = a[0];

 for(i=1; i<n ; i++)

 if(a[i] > max)
 max = a[i];

 return max;
}

� 1. Write a program to accept n numbers in an array and display the largest and smallest
number. Using these values, calculate the range of elements in the array. Refer to the sample
code given above and make appropriate modifications.

� 2. Write a program to accept n numbers in an array and calculate the average. Refer to the
sample code given above and make appropriate modifications.

Signature of the instructor

Date

/ /

 136

Set A. Write programs to solve the following probl ems

� 1. Write a program to accept n numbers in the range of 1 to 25 and count the frequency of
occurrence of each number.

� 2. Write a function for Linear Search, which accepts an array of n elements and a key as
parameters and returns the position of key in the array and -1 if the key is not found. Accept n
numbers from the user, store them in an array. Accept the key to be searched and search it using
this function. Display appropriate messages.

� 3. Write a function, which accepts an integer array and an integer as parameters and counts
the occurrences of the number in the array.

� 4. Write a program to accept n numbers and store all prime numbers in an array called prime.
Display this array.

Signature of the instructor

Date

/ /

Set B. Write programs to solve the following probl ems

� 1. Write a program to accept n numbers from the user and store them in an array such that the
elements are in the sorted order. Display the array. Write separate functions to accept and display
the array. (Hint: Insert every number in its correct position in the array)

� 2. Write a function to sort an array of n integers using Bubble sort method. Accept n numbers
from the user, store them in an array and sort them using this function. Display the sorted array.

� 3. Write a program to accept a decimal number and convert it to binary, octal and hexadecimal.
Write separate functions.

� 4. Write a program to find the union and intersection of the two sets of integers (store it in two
arrays).

� 5. Write a program to remove all duplicate elements from an array.

Signature of the instructor

Date

/ /

 137

Set C. Write programs to solve the following probl ems

� 1. Write a program to merge two sorted arrays into a third array such that the third array is also
in the sorted order.

a1 10 25 90
a2 9 16 22 26 10

0

a3 9 10 16 22 25 26 90 100

� 2. Write a program to accept characters from the user till the user enters EOF and calculate the
frequency count of every alphabet. Display the alphabets and their count.
Input: THIS IS A SAMPLE INPUT
Output: Character Count
 T 2
 H 1
 I 3
 …….

� 3. Write a recursive function for Binary Search, which accepts an array of n elements and a key
as parameters and returns the position of key in the array and -1 if the key is not found. Accept n
numbers from the user, store them in an array and sort the array. Accept the key to be searched
and search it using this function. Display appropriate messages

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 138

Exercise 10 Start Date

 / /

To demonstrate use of 2-D arrays and functions.

You should read the following topics before starting this exercise

1. How to declare and initialize two-dimensional array
2. Accessing elements
3. Usage of two dimensional arrays

Actions involving
2-D arrays

syntax Example

Declaration of 2-D
array

data-type array_name[size][size];

int mat[10][10];
float sales[4][10];

Initialization of 2-D
array

data-type array_name[rows][cols]={
{elements of row 0},{ elements of row
1},…..};
data-type array_name[][cols]={element1,
element2, ……, element size};

int num[][2] = {12, 34, 23,
45, 56, 45};
int num[3][2] = { {1,2},
{3,4}, {5,6}};
int num[3][2] = { 1,2,3,4,
5,6};

Accessing
elements of 2-D
array

Accessing elements of an two-
dimensional array - in general, the array
element is referred as
array_name[index1][index2] where index1
is the row location of and index2 is the
column location of an element in the
array.

int m[3][2];
m is declared as a two
dimensional array (matrix)
having 3 rows (numbered 0
to 2) and 2 columns
(numbered 0 to 1). The
first element is m[0] [0] and
the last is m [2][1].
value = m[1][1];

Entering data into
a 2-D array.

 int mat[4][3];
for (i=0; i<4; i++)
/* outer loop for rows */
 for (j=0;j<3; j++)
/* inner loop for columns */

scanf(“%d”, &mat[i][j]);

Printing the data
from a 2-D array

 for (i=0; i<4; i++)
/* outer loop for rows */
{

for (j=0;j<3; j++)
/* inner loop for columns */

printf(“%d\t” , mat[i][j]);
 printf(”\n”);
 }

 139

Sample program to accept, display and print the sum of elements of each row of a matrix.

/* Program to calculate sum of rows of a matrix*/

#include<stdio.h>
int main()
{
 int mat[10][10], m, n;
 void display(int a[10][10], int m, int n);
 void accept(int a[10][10], int m, int n);
 void sumofrows(int a[10][10], int m, int n);

 printf(“How many rows and columns? ”);
 scanf(“%d%d”,&m, &n);

 printf(“Enter the matrix elements :”);
 accept(mat, m, n);
 printf(“\n The matrix is :\n”);
 display(mat, m, n);
 sumofrows(mat,m,n);
 }

void accept(int a[10][10], int m, int n)
{

int i,j;
for (i=0; i<m; i++) /* outer loop for rows */
 for (j=0;j<n; j++) /* inner loop for columns */

scanf(“%d”, &a[i][j]);
}
void display(int a[10][10], int m, int n)
{

int i,j;
printf(”\nThe elements of %d by %d matrix are\n”, m, n);
for (i=0; i<m; i++) /* outer loop for rows */
{
 for (j=0;j<n; j++) /* inner loop for columns */

printf(“%d\t” , a[i][j]);
 printf(”\n”);
 }
}
void somofrows(int a[10][10], int m, int n)
{

int i,j, sum;
for (i=0; i<m; i++) /* outer loop for rows */
{ sum=0’
 for (j=0;j<n; j++) /* inner loop for columns */

sum= sum+a[i][j];
 printf(“Sum of elements of row %d = %d”, i, sum);
 }
}

1. Write a program to accept, display and print the sum of elements of each row and sum of
elements of each column of a matrix. Refer to sample code given above.

Signature of the instructor

Date

/ /

 140

Set A . Write C programs for the following problems .

� 1. Write a program to accept a matrix A of size mXn and store its transpose in matrix B. Display
matrix B. Write separate functions.

� 2. Write a program to add and multiply two matrices. Write separate functions to accept,
display, add and multiply the matrices. Perform necessary checks before adding and multiplying
the matrices.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Write a menu driven program to perform the following operations on a square matrix. Write
separate functions for each option.

i) Check if the matrix is symmetric.
ii) Display the trace of the matrix (sum of diagonal elements).
iii) Check if the matrix is an upper triangular matrix.

� 2. Write a menu driven program to perform the following operations on a square matrix. Write
separate functions for each option.

i) Check if the matrix is a lower triangular matrix.
ii) Check if it is an identity matrix.

� 3. Write a program to accept an mXn matrix and display an m+1 X n+1 matrix such that the
m+1th row contains the sum of all elements of corresponding row and the n+1th column contains
the sum of elements of the corresponding column.
Example:
A B
1 2 3 1 2 3 6
4 5 6 4 5 6 15
7 8 9 7 8 9 24
 12 15 18 45

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems

� 1. Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle. It is
named after Blaise Pascal. Write a program to display n lines of the triangle.

1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

 141

� 2. A magic square of order n is an arrangement of n² numbers, in a square, such that the n
numbers in all rows, all columns, and both diagonals sum to the same constant. A normal magic
square contains the integers from 1 to n². The magic constant of a magic square depends on n
and is M(n) = (n3+n)/2. For n=3,4,5, the constants are 15, 34, 65 resp. Write a program to
generate and display a magic square of order n.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 142

Exercise 11 Start Date

 / /

To demonstrate use of pointers in C.

You should read the following topics before starting this exercise
1. What is a pointer?
2. How to declare and initialize pointers.
3. ‘*’ and ‘&’ operators.
5. Pointer to a pointer.
6. Relationship between array and pointer.
7. Pointer to array and Array of pointers.
8. Dynamic memory allocation (malloc, calloc, realloc, free).

A Pointer is a variable that stores the memory address of another variable

Actions involving
Pointers

syntax Example

Declaration of pointers

data_type * pointer_name int *p1,*p2;
float *temp1;

Initialization of pointers pointer =&variable
p1=&n;

 int a, *p= &a;

Pointer Arithmetic The C language allow
arithmetic operations to be
performed on pointers:
Increment, Decrement,
Addition, Subtraction
When a pointer is incremented (
or decremented) by 1, it
increments by sizeof(datatype).
For example, an integer pointer
increments by sizeof(int).

Pointers and Functions We can pass the address of a
variable to a function. The
function can accept this
address in a pointer and use
the pointer to access the
variable’s value.

Arrays And Pointers An array name is a pointer to
the first element in the array. It
holds the base address of the
array. Every array expression is
converted to pointer expression
as follows: a[i] is same as
*(a+i)

int n;
*n , *(n + 0) represents 0th
element
n[j], *(n+ j),* (j + n) , j [n] :
represent the value of the jth
element of array n

Pointer To Pointer int a;
int * p;
int **q;
p = &a;

 143

q = *p ;
To allocate memory
dynamically

The functions used are : malloc,
calloc, realloc
ptr = (cast-type *) malloc (
byte-size) ;
Allocates a block of contiguous
bytes. If the space in heap is
not sufficient to satisfy request,
allocation fails, returns NULL.
ptr1 = (cast-type *) calloc (
byte-size);
Similar to malloc, but initializes
the memory block allocated to
0.
ptr = realloc (ptr, new size);
To increase / decrease memory
size.

int * p,*p1;
p = (int *) malloc(10 *
sizeof(int));
p1 = (int *) calloc(10,
sizeof(int));
p1=realloc(p1,20*sizeof(int));

1. Sample program
/* Program to swap two numbers*/
main()
{

int a = 10, b = 20;
void swap1(int x, int y);
void swap2(int *ptr1, int *ptr2);

printf(“\nBefore swapping : a=%d, b=%d”, a,b);
swap1(a, b);
printf(“\nAfter swapping by swap1 : a=%d, b=%d”, a,b);
swap2(&a, &b);
printf(“\nAfter swapping by swap2 : a=%d, b=%d”, a,b);

}

void swap1(int x, int y)
{
 int temp;
 temp = x;
 x = y;
 y = temp;
}

void swap2(int *ptr1, int *ptr2)
{
 int temp;
 temp = *ptr1;
 *ptr1 = *ptr2;
 *ptr2 = temp;
}

 144

2. Sample program
/* Program to allocate memory for n integers dynamically*/
#include <stdlib.h>
void main()
{

int *p, n,i;
printf(“How many elements :”);
scanf(“%d”,&n);

p = (int *)malloc(n*sizeof(int));
/* Accepting data */
for(i=0; i<n;i++)
 scanf(”%d”,p+i);

/* Displaying data */
for(i=0; i<n;i++)
 printf(”%d\t”,*(p+i));

}

� 1. Type the sample program 1 given above, execute it and write the output.

� 2. Sample program 2 allocates memory dynamically for n integers and accepts and displays the
values. Type the sample program 2 given above, execute it. Modify the program to allocate
memory such that the allocated memory is initialized to 0.

Set A . Write C programs for the following problems .

� 1. Write a function which takes hours, minutes and seconds as parameters and an integer s
and increments the time by s seconds. Accept time and seconds in main and Display the new
time in main using the above function.

� 2. Write a program to display the elements of an array containing n integers in the reverse
order using a pointer to the array.

� 3. Write a program to allocate memory dynamically for n integers such that the memory is
initialized to 0. Accept the data from the user and find the range of the data elements.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .
� 1. Accept n integers in array A. Pass this array and two counter variables to a function which
will set the first counter to the total number of even values in the array and the other to the total
number of odd values. Display these counts in main. (Hint: Pass the addresses of the counters to
the function)

� 2. Write a function which accepts a number and three flags as parameters. If the number is
even, set the first flag to 1. If the number is prime, set the second flag to 1. If the number is
divisible by 3 or 7, set the third flag to 1. In main, accept an integer and use this function to check
if it is even, prime and divisible by 3 or 7. (Hint : pass the addresses of flags to the function)

Signature of the instructor

Date

/ /

 145

Set C. Write programs to solve the following probl ems

� 1. Accept the number of rows (m) and columns (n) for a matrix and dynamically allocate
memory for the matrix. Accept and display the matrix using pointers. Hint: Use an array of
pointers.

� 2. There are 5 students numbered 1 to 5. Each student appears for different number of
subjects in an exam. Accept the number of subjects for each student and then accept the marks
for each subject. For each student, calculate the percentage and display. (Hint: Use array of 5
pointers and use dynamic memory allocation)

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

m pointers

n integers

 146

Exercise 12 Start Date

 / /

To demonstrate strings in C.

You should read the following topics before starting this exercise
1. String literals
2. Declaration and definition of string variables
3. The NULL character
4. Accepting and displaying strings
5. String handling functions

A string is an array of characters terminated by a special character called NULL character(\0).
Each character is stored in 1 byte as its ASCII code.

Actions Involving
strings

Explanation Example

Declaring Strings char message[80];
Initializing Strings char message[]= { ’H’, ’e’, ’l’, ’l’,

’o’, ’\0’ } ;
char message [] = “Hello”;

Accepting Strings scanf and gets can be used
to accept strings

char name[20], address[50];
printf(“\n Enter your name :);
scanf(“%s”, name);
printf(“\n Enter your address :);
gets(address);

Displaying Strings printf and puts can be used to
display strings.

printf(“\n The name is %s:”,
name);
printf(“\n The address is :”);
puts(address);

String functions All string operations are
performed using functions in
“string.h”. Some of the most
commonly used functions are
a. strlen – Returns the

number of characters in
the string (excluding \0)

b. strcpy – Copies one
string to another

c. strcmp – Compares two
strings. Returns 0 (equal),
+ve (first string >
second), -ve (first string <
second). It is case
sensitive

d. strcmpi – Same as
strcmp but ignores case

e. strcat – Concatenates the
second string to the first.

#include <string.h>
main()
{
char str1[50], str2[50],str3[100];
printf(“\n Give the first string:”);
gets(str1);
printf(“\n Give the second string
string:”);
gets(str2);
if (strlen(str1) == strlen(str2)
{strcpy(str3, strrev(str1));
 strcat(str3, strupr(str2));
 puts(strupr(str3));
}
else
 puts(strlwr(str2);
}

 147

Returns the concatenated
string.

f. strrev – Reverses a string
and returns the reversed
string.

g. strupr – Converts a string
to uppercase.

h. strlwr - Converts a string
to lowercase

Sample program :
The following program demonstrates how to pass two strings to a user defined function and copy
one string to other using pointers
void string_copy (char *t,char *s)
{
 while (*s !=’\0’) /* while source string does not end */
 { *t=*s;
 s++;
 t++;
 }
 t =’\0’; / terminate target string */
}

void main()
{
 char str1[20], str2[20];
 printf(“Enter a string :”);
 gets(str1);
 string_copy(str2, str1);
 printf(“The copied string is :”);
 puts(str2);
}

� 1. Write a program to accept two strings str1 and str2. Compare them. If they are equal, display
their length. If str1 < str2, concatenate str1 and the reversed str2 into str3. If str1 > str2, convert
str1 to uppercase and str2 to lowercase and display. Refer sample code for string functions
above.
� 2. Type the sample program above and execute it. Modify the program to copy the characters
after reversing the case. (Hint: First check the case of the character and then reverse it)

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Write a menu driven program to perform the following operations on strings using standard
library functions:
 � Length � Copy � Concatenation � Compare

� Reverse � Uppercase � Lowercase � Check case

� 2. Write a program that will accept a string and character to search. The program will
call a function, which will search for the occurrence position of the character in the

 148

string and return its position. Function should return –1 if the character is not found in
the string.

� 3. A palindrome is a string that reads the same-forward and reverse. Example: “madam” is a
Palindrome. Write a function which accepts a string and returns 1 if the string is a palindrome and
0 otherwise. Use this function in main.

� 4. For the following standard functions, write corresponding user defined functions and write a
menu driven program to use them. strcat, strcmp, strrev, strupr

� 5. Write a program which accepts a sentence from the user and alters it as follows:
Every space is replaced by *, case of all alphabets is reversed, digits are replaced by ?

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Write a menu driven program which performs the following operations on strings. Write a
separate function for each option. Use pointers
 i. Check if one string is a substring of another.
 ii. Count number of occurrences of a character in the string.
 iii. Replace all occurrences of a character by another.

� 2. Write a program in C to reverse each word in a sentence.

� 3. Write a function which displays a string in the reverse order. (Use recursion)

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems

� 1. Write a program that accepts a sentence and returns the sentence with all the extra
spaces trimmed off. (In a sentence, words need to be separated by only one space; if
any two words are separated by more than one space, remove extra spaces)

� 2. Write a program that accepts a string and displays it in the shape of a kite. Example: “abcd”
will be displayed as :

 aa
abab

abcabc
abcdabcd
abcabc
abab
aa

� 3. Write a program that accepts a string and generates all its permutations. For example: ABC,
ACB, BAC, BCA, CAB, CBA

� 4. Write a program to display a histogram of the frequencies of different characters in a
sentence. Note: The histogram can be displayed as horizontal bars constructed using * character.
Example: this is a single string

 149

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

t

i

h

s

a

n

g

l
e

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

* *

*

*

r *

 150

Exercise 13 Start Date

 / /

To demonstrate array of Strings.

You should read the following topics before starting this exercise
1. How to declare and initialize strings.
2. String handling functions
3. How to create and access an array of strings.
4. Dynamic memory allocation

An array of strings is a two dimensional array of characters. It can be treated as a 1-D array such
that each array element is a string.

Actions Involving
array of strings

Explanation Example

Declaring String array char
array[size1][size2];

char cities[4][10]

Initializing String array char cities[4][10] = { “Pune”, “Mumbai”,
“Delhi”, “Chennai”};

Sample program-
The following program illustrates how to accept ‘n’ names , store them in an array of strings and
search for a specific name.

/* Program to search for name from array */
#include <stdio.h>
void main()
{
 char list[10][20]; /*list is an array of 10 strings */
 char name[20];
 int i,n;
 printf(“\n How many names ?:”);
 scanf(“%d”, &n);
 for (i=0;i<n; i++)
 {

printf(“\n Enter name %d,”i);
 scanf(“%s”, list[i]);
 }
 printf(“\n The names in the list are : \n”);
 for (i=0; i<n; i++)
 printf(”%s”, list[i]);
 printf(“\n Enter the name to be searched “);
 scanf(“%s”, name);
 for (i=0; i<n; i++)
 if(strcmp(list[i],name)==0)
 {
 printf(“Match found at position %d”, i);
 break;
 }
 if(i==n)
 printf(“Name is not found in the list”);
}

 151

1. Type the above sample program and execute the same for different inputs.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Write a program that accepts n words and outputs them in dictionary order.
� 2. Write a program that accepts n strings and displays the longest string.
� 3. Write a program that accepts a sentence and splits the sentence into words. Sort each word
and reconstruct the sentence.
Input – this is a string Output – hist is a ginrst

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Write a function, which displays a given number in words.
For Example: 129 One Hundred Twenty Nine
 2019 Two Thousand Nineteen
� 2. Define two constant arrays of strings, one containing country names (ex: India, France etc)
and the other containing their capitals. (ex: Delhi, Paris etc). Note that country names and capital
names have a one-one correspondence. Accept a country name from the user and display its
capital. Example: Input: India , Output: Delhi.

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems

� 1. Create a mini dictionary of your own. Each entry in the dictionary contains three parts (word,
its meaning, similar word). The entries are stored in the sorted order of words. Write a menu
driven program, which performs the following operations.
 i. Add a new word (Insert new word and its details in the correct position)
 ii. Dictionary look-up
 iii. Find similar word
 iv. Delete word
 v. Display All words starting with a specific alphabet (along with their meaning).

(Hint: Use 2-D array of strings having n rows and 3 columns)

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 152

Exercise 14 Start Date

 / /

Assignment to demonstrate bitwise operators.

You should read the following topics before starting this exercise
1. Bitwise operators and their usage (&, |, ^, ~, <<, >>)

1. Bitwise operators: C provides 6 operators to perform operations on bits. These operators
operate on integer and character but not the float and double. Ones complement operator (~) is
unary while the others are binary.

Operator Purpose

Example

~
One’s
complement

~a : Complements each bit of variable a

>> Right shift a=a>>1; Shifts bits of a one position to the right
<< Left Shift a=a<<n; Shifts bits of a n positions to the left

& Bitwise AND a = b&c; performs bitwise AND on b and c
a = a&0xFF00; Masks the lower order 8 bits of a

| Bitwise OR a = a!b; performs bitwise OR on b and c

^ Bitwise XOR
x = x^y; y=x^y; x=x^y; Swaps x and y by
performing bitwise XOR.

Sample code: The following function accepts an integer argument and displays it in binary
format. It uses shift operator and AND masking.

void displaybits(unsigned int n)
{
 unsigned int mask = 32768;
 /*set MSB of mask to 1 */
 while (mask>0)
 {
 if((n&mask)==0)
 printf(“0”);
 else
 printf(“1”);
 mask = mask >>1; /* shift mask right */
}

� 1. Write a program to accept n integers and display them in binary. Use the function given
above.

Signature of the instructor

Date

/ /

 153

Set A . Write C programs for the following problems .

� 1. Write a program to accept 2 integers and perform bitwise AND, OR, XOR and Complement.
Display the inputs and results in binary format. Use the function in the above exercise.

� 2. Write a program to swap two variables without using a temporary variable. (Hint: Use XOR)

� 3. Write a program which accepts two integers x and y and performs x<<y and x>>y. Display
the result in binary.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Write functions to calculate the size of an integer, character, long and short integer using
bitwise operators. Store their declaration in file “myfunctions.h” and their definitions in file
“myfunctions.c”. Include these files in your program and use these functions to display the size of
each.

� 2. Write a program to perform the following operations on an unsigned integer using bitwise
operators and display the result in hexadecimal format.
 i. Swap the ____ and ____ nibble (4 bits)
 ii. Remove the lower order nibbles from the number.

For example: Input: A3F1 Output 00A3
 iii. Reverse the nibbles

For example: Input: A3F1 Output 1F3A

� 3. Write a program which accepts an integer and checks whether it is a power of 2.

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems

� 1. Write a program to add, subtract, multiply and divide two integers using bitwise operators.
� 2. Packing and Unpacking Data: A date consists of three parts : day, month, year. To store this
information, we would require 3 integers. However, day and month can take only limited values.
Hence, we can store all three in a single integer variable by packing bits together. If we are using
the dd-mm-yy format, the date will be stored in memory as an unsigned integer (16 bits) in the
following format. Year (Bits 15-9), Month (bits 8 – 5), Day (Bits 4 - 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
y y y y y y y m m m m d d d d d

hour Month day

Accept day, month and year from the user and pack them into a single unsigned int. Unpack and
display them in the binary format. (Hint: for packing, use: 512 * year + 32 * month + day)
The output should be:
Enter the date, month and year –dd mm yy :
31 12 89
Packed date = 1011001110011111
Day = 31
0000000000011111

 154

Month = 12
0000000000001100
Year = 89
0000000001011001

� 3. Packing and Unpacking Data: Time consists of three parts : hours, minutes, seconds. To
store this information, we would require 3 integers. However, all these three variable take only
limited values. Hence, we can store all three in a single integer variable by packing bits together.
Time being 0 to 23 hours, it will require maximum 5 bits, minutes being 0 to 59 will require 6 bits.
The two together take up 11 bits. The remaining 5 bits cannot store seconds which are also in the
range 0 to 59 hence we store double seconds which are in the range 0 to 29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
h h h h h m m m m m m ds ds ds ds ds
 hour Minutes Double seconds

Accept hour, minute and double seconds from the user and pack them into a single unsigned int.
Unpack and display them in the binary format.
The output should be:
Enter the hour, minutes and double seconds –hh mm ss :
07 12 20
Packed date = 0011100110010100
Hour = 07
0000000000000111
Minutes = 12
0000000000001100
Double seconds = 20
0000000000010100

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 155

Exercise 15 Start Date

 / /

Structures in C

You should read the following topics before starting this exercise
1. Concept of structure
2. Declaring a structure
3. Accessing structure members
4. Array of structures
5. Pointer to a structure.
6. Passing structures to functions

A structure is a composition of variables possibly of different data types, grouped together under a
single name. Each variable within the structure is called a ‘member’.

Operations
performed

Syntax / Description Example

Declaring a structure struct structure-name
{
 type member-1 ;
 type member-2;
 .
 .
 type member-n ;
};

struct student
{
 char name[20];
 int rollno;
 int marks;
};

Creating structure
variables

struct structurename variable;

struct student stud1;

Accessing structure
members

variable.member stud1.name
stud1.rollno
stud1.marks

initializing a structure
variable

the initialization values have to be
given in {} and in order

struct student stud1 =
{“ABCD”,10,95};

Pointer to a structure struct structure-name * pointer-
name;

struct student *ptr;
 ptr = &stud1;

Accessing members
using Pointer

pointer-name -> member-name;

ptr->name; ptr->rollno;

Array of structures struct structure-name array-
name[size];

struct student stud[10];

passing Structures to
Functions

return-type function-name (struct
structure-name variable);

void display(struct student s);

pass an array of
structures to a function

return-type function-name (struct
structure-name array[size]);

void display(struct student
stud[10]);

 156

Sample Code :

/* Program for student structure */

#include<stdio.h>
struct student
{ char name[20];
 int rollno;
 int marks[3];
 float perc;
};
void main()
{
 int i, sum j;
 struct student s[10];
 printf(“\n Enter the details of the 10 students \n”);
 for (i=0;i<10;i++)
 {
 printf(“\n Enter the name and roll number \n”);
 scanf(“%s%d”,s[i].name, &s[i].rollno);
 printf(“\n Enter marks for three subjects:”);
 sum = 0 ;
 for { j=0;j<3;j++)
 {
 scanf(“%d”,&s[i].marks[j]);
 sum = sum + s[i].marks[j];
 }
 s[i].perc = (float)sum/3;
 }
 /* Display details of students */
 printf(“\n\n Name \t Roll no\t Percentage”);
 printf(“\n================================\n”);
 for(i=0;i<10;i++)
 {
 printf(“\n%s\t%d\t%f”,s[i].name,s[i].rollno,s[i].perc);
 }
}

1. The program in Sample code 1 demonstrates an array of structures of the type student. Type
the above program and run it. Modify the program to display the details of the student having the
highest percentage.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .
� 1. Create a structure student (roll number, name, marks of 3 subjects, percentage). Accept
details of n students and write a menu driven program to perform the following operations. Write
separate functions for the different options.

i) Search
ii) Modify
iii) Display all student details
iv) Display all student having percentage > _____
v) Display student having maximum percentage

 157

� 2. Create a structure employee (id, name, salary). Accept details of n employees and write a
menu driven program to perform the following operations. Write separate functions for the
different options.

i) Search by name
ii) Search by id
iii) Display all
iv) Display all employees having salary > _____
v) Display employee having maximum salary

Instructor should fill in the blanks with appropriate values.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Create a structure having the following fields:
Structure name: _______
Fields: ________, _______, _______, ________, _______, _______
 Accept details of n variables of the above structure and write a menu driven program to perform
the following operations. Write separate functions for the different options.

i) ______ ii) _________ iii) __________ iv) __________

� 2. Create a structure Fraction (numerator, denominator). Accept details of n fractions and write
a menu driven program to perform the following operations. Write separate functions for the
different options. Use dynamic memory allocation. Note: While accepting fractions, store the
fractions in the reduced form.

i) Display the largest fraction
ii) Display the smallest fraction
iii) Sort fractions
iv) Display all

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems
� 1. Accept book details of ‘n’ books viz, book title, author, publisher and cost. Assign an

accession numbers to each book in increasing order. (Use dynamic memory allocation).
Write a menu driven program for the following options.
i. Books of a specific author
ii. Books by a specific publisher
iii. All books having cost >= _____ .
iv. Information about a particular book (accept the title)
v. All books.

� 2. The government of a state wants to collect census information for each city and store the
following information : city name, population of the city, literacy percentage. After collecting data
for all cities in the state, the government wants to view the data according to :
 i. Literacy level
 ii. Population
 iii. Details of a specific city.
Write a C program using structures and dynamic memory allocation.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 158

Exercise 16 Start Date

 / /

Nested Structures and Unions

You should read the following topics before starting this exercise
1. Creating and accessing structures
2. Array of structures
3. Dynamic memory allocation
4. Structure within a structure
5. Creating and accessing unions

Nested structures: The individual members of a structure can be other structures as well. This is
called nesting of structures.

Operations
performed

Syntax Example

Creating a nested
structure

struct structure1
{
 . . .
 struct structure2
 {
 . . .
 } variable;
 . . .
};

Method 2
struct structure2
{
 . . .
};

struct structure1
{
 . . .
 struct structure2
variable;
 . . .
};

struct student
{
 int rollno; char name[20];
 struct date
 {
 int dd, mm, yy;
 } bdate, admdate;
};

struct date
{
 int dd, mm, yy;
};

struct student
{
 int rollno; char name[20];
 struct date bdate, admdate;
};

Accessing nested
structure members

nested structure members can
be accessed using the (.)
operator repeatedly.

stud1.bdate.dd, stud1.bdate.mm

self referential
structure

A structure containing a pointer
to the same structure

struct node
{
 int info;
 struct node *next;

 159

};
Unions A union is a variable that

contains multiple members of
possibly different data types
grouped together under a single
name. However, only one of
the members can be used at a
time. They occupy the same
memory area.

union u
{
 char a;
 int b;
};

Sample Code 1:
Example: The following structure is for a library book with the following details : id, title, publisher,
code (1 – Text book, 2 – Magazine, 3 – Reference book). If the code is 1, store no-of-copies. If
code = 2, store the issue month name. If code = 3, store edition number. Also store the cost.

/* Program for demonstrating structure and union */

struct library_book
{
 int id;
 char title[80],publisher[20] ;
 int code;
 union u
 {
 int no_of_copies;
 char month[10];
 int edition;
 }info;
 int cost;
};
void main()
{
struct library_book book1;
printf(“\n Enter the details of the book \n”);

printf(“\n Enter the id, title and publisher \n”);
scanf(“%d%s%s”,&book1.id, book1.title, book1.publisher);
printf(“\n Enter the code: 1-Text Book, 2-Magazine, 3-Reference”);
 scanf(“%d”,book1.code);
switch(book1.code)
{
 case 1: printf(“Enter the number of copies :”);
 scanf(“%d”,&book1.info.no_of_copies);
 break;
 case 2: printf(“Enter the issue month name :”);
 scanf(“%s”,book1.info.month);
 break;
 case 3: printf(“Enter the edition number:”);
 scanf(“%d”,&book1.info.edition);
 break;
}
printf(“Enter the cost :”);
scanf(“%d”,&book1.cost);

/* Display details of book */
printf(“\n id = %d”, book1.id);

 160

printf(“\n Title = %s”, book1.title);
printf(“\n Publisher = %s”, book1.publisher);
switch(book1.code)
{
 case 1: printf(“Copies = %d:”, book1.info.no_of_copies);
 break;
 case 2: printf(“Issue month name = %s”,book1.info.month);
 break;
 case 3: printf(“Edition number =%d:”,book1.info.edition);
 break;
}
printf(“\n Cost = %d”, book1.cost);
}

Sample Code 2:
A linked list is a collection of data elements which are linked to one another by using pointers i.e.
the every node stores the address of the next node. The advantage of using a linked list over an
array is that it is easy to insert and delete elements from the list.
To create a linked list, we have to use a self referential structure (See table above). Each element
of the list is called a node.

list

node node node node

info next info next info next info next

NULL

To create a node, we have to allocate memory dynamically. The following program creates 5
nodes , stores the numbers 1…5 in them and displays the data.

/* Program to create a linked list of 5 nodes */

#include <stdio.h>
struct node
{
 int info;
 struct node *next;
};
struct node *list = NULL; /* list is a pointer to the linked list */

void createlist()
{
 struct node *temp, *p;
 int i;
 for(i=1;i<=5;i++)
 {
 p=(struct node *)malloc(sizeof(struct node)); /* create a node */
 p->info = i;
 p->next=NULL;
 if(list == NULL)
 list=temp=p; /* list points to the first node */
 else
 {
 temp->next=p; /* link new node to the last */
 temp=p;
 }
}
void displaylist()
{
 struct node *temp;

 161

 for(temp=list; temp!=NULL; temp=temp->next) /* use a temporary pointer */
 printf(%d \t”, temp->info);
}

void main()
{
 createlist();
 displaylist();
}

� 1. The sample code 1 given above demonstrates how we can create a variable of the above
structure and accept and display details of 1 book. Type the program and execute it. Modify the
program to accept and display details of n books.

� 2. The sample code 2 given above demonstrates how we can create a linked list and traverse
the list. Type the program and execute it. Modify the displaylist function to display only the even
numbers from the list.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Modify the sample program 1 above to accept details for n books and write a menu driven
program for the following:

� i) Display all text books
� ii) Search Text Book according to Title
� iii) Find the total cost of all books (Hint: Use no_of_copies).

� 2. Modify the sample program 1 to accept details for n books and write a menu driven program
for the following:

� i) Display all magazines
� ii) Display magazine details for specific month.
� iii) Find the “costliest” magazine.

� 3. Modify the sample program 1 to accept details for n books and write a menu driven program
for the following:

� i) Display all reference books
� ii) Find the total number of reference books
� iii) Display the edition of a specific reference book.

Signature of the instructor

Date

/ /

 162

Set B. Write programs to solve the following probl ems

� 1. Create a structure named ________having the following fields:

Field name Description

 Write a menu driven program to perform the following operations :
 i) _________ ii) _________ iii) _________ iv) _________ v) _________

� 2. Write a program to create a linked list of n nodes and accept data from the user for each
node. Display the list. Accept a number from the user and search for the element in the list.

Signature of the instructor

Date

/ /

Set C. Write programs to solve the following probl ems

� 1. A shop sells electronic items. Each item has an id, company name, code (1-TV, 2-Mobile

phones, 3-Camera) and cost. The following additional details are stored for each item.
• TV - size, type (CRT-1 / LCD- 2 / Plasma-3)
• Mobile Phone - type (GSM – 1 / CDMA – 2) , model number.
• Camera – resolution, model number.

The shop wants to maintain a list of all items and perform the following operations for each of the
item types:

 i) Display all
 ii) Search for specific item
 iii) Sort according to cost

� 2. Write a program to create a linked list of n nodes and accept data from the user for each
node. Write a menu driven program to perform the following operations:

i) Display the list
 ii) Search for specific number
 iii) Display the element after ____

iv) Find the maximum / minimum

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 163

Exercise 17 Start D ate

 / /

Assignment to demonstrate command line arguments an d preprocessor directives .

You should read the following topics before starting this exercise

1. Passing arguments from the command line to main
2. Accessing command line arguments
3. File inclusion, macro substitution and conditional compilation directives.
4. Argumented and Nested macros

Preprocessor
directives

They begin with a # which must
be the first non-space character
on the line.
They do not end with a
semicolon.

Macro Substitution
Directive

define MACRO value # define PI 3.142

Argumented
macro

define MACRO(argument)
value

define SQR(x) x*x
#define LARGER(x,y) ((x)>(y)?(x):(y))

Nested macro one macro using another #define CUBE(x) (SQUARE(x)*(x))

File Inclusion
directive

#include <filename>
 #include “filename”

#include <stdio.h>

Conditional
Compilation
directive

if, # else, # elif, # endif #ifdef #ifdef PI
 #undef PI
#endif

Command Line
Arguments

int argc - argument counter
char *argv[]-argument vector

void main(int argc, char *argv[])
{
printf(“There are %d arguments in all”,
argc);
for (i=0; i<argc; i++)
 printf(”Argument %d =%s”,i,argv[i]);
}

To run a program
using command
line arguments

Compile the program using cc
Execute the program using
a.out followed by command line
arguments

Example: a.out ABC 20
Here, ABC and 20 are the two command
line arguments which are stored in the
form of strings. To use 20 as an integer,
use function atoi .
Example: int num = atoi(argv[2]);

 164

Sample Code 1

/* Program for argumented macros */

#define INRANGE(m) (m >= 1 && m<=12)
#define NEGATIVE(m) (m<0)
#define ISLOWER(c) (c>=’a’&&c<=’z’)
#define ISUPPER(c) (c>=’A’&&c<=’Z’)
#define ISALPHA(c) (ISUPPER(c)||ISLOWER(c))
#define ISDIGIT(c) (c>=’0’&&c<=’9’)

void main()
{
 int m; char c;
 printf(“Enter an integer corresponding to the month”);
 scanf(“%d”,&m);
 if(NEGATIVE(m))
 printf(“Enter a positive number”);
 else
 if(INRANGE(m))
 printf(“You Entered a valid month”);

 printf(“Enter a character :”);
 c=getchar();
 if(ISAPLHA(c))
 printf(“You entered an alphabet”);
 else
 if(ISDIGIT(c))
 printf(“You Entered a digit”);
}

� 1. Write a program to display all command line arguments passed to main in the reverse order.
Hint: See table above.

� 2. Sample code 1 above demonstrates the use of argumented and nested macros. Type the
program and execute it.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Write a program to accept three integers as command line arguments and find the minimum,
maximum and average of the three. Display error message if invalid number of arguments are
entered.

� 2. Write a program which accepts a string and two characters as command line arguments and
replace all occurrences of the first character by the second.

 165

� 3. Define a macro EQUALINT which compares two parameters x and y and gives 1 if equal
and 0 otherwise. Use this macro to accept pairs of integers from the user. Calculate the sum of
digits of both and continue till the user enters a pair whose sum of digits is not equal.

� 4. Define a macro EQUALSTR which compares two strings x and y and gives 1 if equal and 0
otherwise. Use this macro to accept two strings from the user and check if they are equal.

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Write a program to accept two strings as command line arguments and display the union
and intersection of the strings. If the user enters invalid number of arguments, display appropriate
message.

� 2. Write a program which accepts a string and an integer (0 or 1) as command line arguments.
If the integer entered is 0, sort the string alphabetically in the ascending order and if it is 1, sort it
in the descending order. If the user enters invalid number of arguments, display appropriate
message. (Hint – use atoi)

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems .

� 1. Create a header file “mymacros.h” which defines the following macros.
i. SQR(x) ii. CUBE(x) - nested iii. GREATER2(x,y) iv. GREATER3 (x,y,z) – nested

v. FLAG (value = 1) (which may or may not be defined)

Include this file in your program. Write a menu driven program to use macros SQR, CUBE,
GREATER2 and GREATER3. Your program should run the first two macros if the macro called
FLAG has been defined. If it is not defined, execute the other two macros. Run the program twice
– with FLAG defined and with FLAG not defined.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 166

Exercise 18 Start Date

 / /

To demonstrate text files using C

You should read the following topics before starting this exercise

1. Concept of streams
2. Declaring a file pointer
3. Opening and closing a file
4. Reading and Writing to a text file
5. Command line arguments

Operations
performed

Syntax Example

Declaring File pointer FILE * pointer; FILE *fp;
Opening a File fopen(“filename”,mode);

where mode = “r”, “w”,
“a”, “r+”, “w+”, “a+”

fp=fopen(“a.txt”, “r”);

Checking for
successful open

if (pointer==NULL) if(fp==NULL)
 exit(0);

Checking for end of file feof if(feof(fp))
 printf(“File has ended”);

Closing a File fclose(pointer);
fcloseall();

fclose(fp);

Character I/O fgetc, fscanf
fputc, fprintf

ch=fgetc(fp);
fscanf(fp, ”%c”,&ch);
fputc(fp,ch);

String I/O fgets, fscanf
fputs, fprintf

fgets(fp,str,80);
fscanf(fp, ”%s”,str);

Reading and writing
formatted data

fscanf
fprintf

fscanf(fp, ”%d%s”,&num,str);
fprintf(fp, “%d\t%s\n”, num, str);

Random access to
files

ftell, fseek, rewind fseek(fp,0,SEEK_END); /* end of file*/
long int size = ftell(fp);

Sample Code 1
The following program reads the contents of file named a.txt and displays its contents on the
screen with the case of each character reversed.
/* Program revrese case of characters in a file */

#include <stdio.h>
#include <ctype.h>
void main()
{
 FILE * fp;
 fp = fopen(“a.txt”, “r”);
 if(fp==NULL)
 {
 printf(“File opening error”);

 167

 exit(0);
 }
 while(!feof(fp))
 {
 ch = fgetc(fp);
 if(isupper(ch))
 putchar(tolower(ch));
 else
 if(islower(ch))
 putchar(toupper(ch));
 else
 putchar(ch);
 }
 fclose(fp);
}

Sample Code 2
The following program displays the size of a file. The filename is passed as command line
argument.

/* Program to display size of a file */

#include <stdio.h>
void main(int argc, char *argv[])
{
 FILE * fp;
 long int size;
 fp = fopen(argv[1], “r”);
 if(fp==NULL)
 {
 printf(“File opening error”);
 exit(0);
 }
 fseek(fp, 0, SEEK_END); /* move pointer to end of file */
 size = ftell(fp);
 printf(“The file size = %ld bytes”, size);
 fclose(fp);
}

Sample Code 3
The following program writes data (name, roll number) to a file named student.txt , reads the
written data and displays it on screen.

#include <stdio.h>
void main()
{
 FILE * fp;
 char str[20]; int num;
 fp = fopen(“student.txt”, “w+”);
 if(fp==NULL)
 {
 printf(“File opening error”);
 exit(0);
 }
 fprintf(fp,“%s\t%d\n”, “ABC”, 1000);

fprintf(fp,“%s\t%d\n”, “DEF”, 2000);
fprintf(fp,“%s\t%d\n”, “XYZ”, 3000);

 168

 rewind(fp);
while(!feof(fp))

 {
 fscanf(fp,“%s%d”, str, &num);
 printf(“%s\t%d\n”, str, num);

 }
 fclose(fp);
}

� 1. Create a file named a.txt using the vi editor. Type the sample program 1 given above and
execute the program. Modify the program to accept a character from the user and count the total
number of times character occurs in the file.

� 2. Type the sample program 2 above and execute it. Modify the program to display the last n
characters from the file.

� 3. Type the sample program 3 above and execute it. Modify the program to accept details of n
students and write them to the file. Read the file and display the contents in an appropriate
manner.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Write a program to accept two filenames as command line arguments. Copy the contents of
the first file to the second such that the case of all alphabets is reversed.

� 2. Write a program to accept a filename as command line argument and count the number of
words, lines and characters in the file.

� 3. Write a program to accept details of n students (roll number, name, percentage) and write it
to a file named “student.txt”. Accept roll number from the user and search the student in the file.
Also display the student details having the highest percentage.

Signature of the instructor

Date

/ /

Set B. Write programs to solve the following probl ems

� 1. A file named numbers.txt has a set of integers. Write a C program to read this file and
convert the integers into words and write the integer and the words in another file named
numwords.txt.
Example:
numbers.txt numwords.txt

11 Eleven
261 Two hundred Sixty One
9 Nine

� 2. Write a program which accepts a filename and an integer as command line arguments and
encrypts the file using the key. (Use any encryption algorithm)

 169

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems .

� 1. A text file contains lines of text. Write a program which removes all extra spaces from the
file.

� 2. Write a menu driven program for a simple text editor to perform the following operations on a
file, which contains lines of text.
 i. Display the file
 ii. Copy m lines from position n to p
 iii. Delete m lines from position p
 iv. Modify the nth line
 v. Add n lines

� 3. Write a program which reads the contents of a C program and replaces all macros occurring
in the program with its value. Assume only simple substitution macros (ex: #define FALSE 0).

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 170

Exercise 19 Start Date

 / /

To demonstrate binary file handling using C.

You should read the following topics before starting this exercise

1. Concept of streams
2. Declaring a file pointer
3. Opening and closing files
4. File opening modes
5. Random access to files
6. Command line arguments

In binary files, information is written in the form of binary . All data is written and read with no
interpretation and separation i.e. there are no special characters to mark end of line and end of
file.
I/O operations on binary files

Reading from a
binary file

fread(address,size-of-element,number
of elements,pointer);

fread (&num,sizeof(int),1,fp);
fread
(&emp,sizeof(emp),1,fp);
fread(arr,sizeof(int),10,fp);

Writing to a binary
file

fwrite(address,size-of-element,number
of elements,pointer);

fwrite (&num,sizeof(int),1,fp);
fwrite
(&emp,sizeof(emp),1,fp);

Sample Code
/* Program to demonstrate binary file */

struct employee
{ char name[20];
 float sal;
};
main()
{
 FILE *fp;
 struct employee e;
 int i;
 if((fp=fopen (“employee.in”,“wb”))==NULL)
 { printf(“Error opening file”);
 exit();
 }

 for(i=0;i<5;i++)
 {

printf(”\n Enter the name and salary”);
 scanf(“%s%f”,e.name,&e.sal);
 fwrite(&e,sizeof(e),1,fp);

 }

 171

fclose(fp);

fp=fopen(“employee.in”,”rb”); /* reopen file */
 if(fp==NULL)
 { fprintf(stderr, “Error opening file);
 exit();

}
 for(i=0;i<5;i++)
 {

fread(&e,sizeof(e),1,fp);
 printf(“\n Name = %s Salary = %f”,e.name,e.sal);
 }

fclose(fp);
}

1. Type program given above, writes data of 5 employees to a binary file and then reads the file.
Modify the program to search an employee by name.

Signature of the instructor

Date

/ /

Set A . Write C programs for the following problems .

� 1. Create a structure student (roll number, name, percentage) Write a menu driven program to
perform the following operations on a binary file- “student.dat”. Write separate functions for the
different options.

1. Add a student (Note: Students should be assigned roll numbers consecutively)
2. Search Student

a. according to name
b. according to roll number

3. Display all students
� 2. Create a structure student (roll number, name, percentage) Write a menu driven program to
perform the following operations on a binary file- “student.dat”. Write separate functions for the
different options.

1. Add a student (Note: Students will be assigned roll numbers consecutively)
2. Modify details

a. according to name
b. according to roll number

3. Display all students
� 3. Create a structure student (roll number, name, percentage). Write a menu driven program to
perform the following operations on a binary file- “student.dat”. Write separate functions for the
different options.

1. Add a student (Note: Students will be assigned roll numbers consecutively)
2. Delete student

a. according to name
b. according to roll number

3. Display all students

 172

Signature of the instructor

Date

/ /

Set B . Write C programs for the following problems .

� 1. Create two binary files such that they contain roll numbers, names and percentages. The
percentages are in ascending orders. Merge these two into the third file such that the third file still
remains sorted on percentage. Accept the three filenames as command line arguments.

� 2. Create a structure having the following fields:
Structure name: _______
Fields: __
Store information for n variables of the above structure in a binary file. Write a menu driven
program to perform the following operations Write separate functions for the different options.

i) ______ ii) _________ iii) __________ iv) __________

Signature of the instructor

Date

/ /

Set C . Write C programs for the following problems .

� 1. Create a binary file which contains details of student projects namely roll number, project
name, project guide. The first line of the file contains an integer indicating the total number of
students. When the program starts, read all these details into an array and perform the following
menu driven operations. When the user selects Exit from the menu, store these details back into
the file.
1. Add 2. Delete 3. Search 2. Modify 3. Display all 4. Exit

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 173

Exercise 20 Start Date

 / /

Problem Solving Assignment

Write C programs for the following problems.

1. The calendar problem

Display a calendar for a particular year. If month-number is supplied, only that month is displayed.

2. Large number multiplication problem

Write a program that will multiply two (2) N digit positive integers, where N may be
arbitrarily large. Your program should output the product(s).

Input format : One N digit positive integer per line in input and output files.

Sample Input:
65656432310964579864321356898765432243578987876654
94454

Sample Output :
6201512657499848426504609444515990137135009720901476916

3. Room IDentification Problem

A company has just finished construction of their new pentagon shaped office building. However
identifying the location of a room is a problem.

Here is how the room numbering scheme works:

Room numbers will be between 100 and 99999 inclusive. The ones digit (rightmost) tells which
side of the pentagon the room is on. The next one after that, the tens digit, gives the hall number
in which the room is (see table). The digits after that give which floor the room is on.

0,1 Hall 1
2,3 Hall 2
4,5 Hall 3
6,7 Hall 4
8,9 Hall 5

The least significant digit (right-most) tells whether the room is on the courtyard or outside edge of
the hall. If it is even, the room faces the courtyard, if it is odd, it faces the outside.

Input Format: The input will consist a list of room numbers not longer than 5 digits. The input
ends with -1.

Output Format: You will print the Room, Floor, Hall, and Side that each room number
represents.

 174

Room r is on Floor f in Hall h facing {courtyard|outside}

Example Input :
111
1322
455
512
-1

Example Output:
Room 111 is on Floor 1 in Hall 1 facing outside
Room 1322 is on Floor 13 in Hall 2 facing courtyard
Room 455 is on Floor 4 in Hall 3 facing outside
Room 512 is on Floor 5 in Hall 1 facing courtyard

4.The Anagram Problem

An anagram is a pair of words or sentences that contain the same number of the same letters.
Examples include Dormitory whose anagram is Dirty Room. You will write a program to
recognize whether a pair of words or sentences are anagrams.

Input: The input accept two strings and check whether they are anagrams.

Output: If a pair of strings tested are anagrams of each other, print “An Anagram,” otherwise
print, “Not An Anagram.”

Example Input 1:
dormitory
dirtyroom

Output:
An Anagram

Example Input 2:
eleven plus two
twelve plus one

Output:
An Anagram

Example Input 3:
thisisntananagram
andthatissuchashame

Output:
Not An Anagram

5. The Secret Word problem :

You have determined that the enemy is using the following mechanism to encode secret words.
You believe that the first letters of each word in enemy messages form secret words. Only the
first letters of consecutive words are used to form the secret words. Further, a sentence may
contain other words before and/or after the actual words that make up the secret word.
Messages always contain a single space between words.

 175

Write a program that takes a secret word and a message as input and determines if the message
contains the secret word. The program should not be case-sensitive and should ignore
punctuation.

Input Format: The first line of input consists of the secret word. The second line contains the
sentence to check.

Output Format: The output will be “Secret word found” if the secret word is found in the
sentence, otherwise, output “Secret word not found.”

Input:
year
the yellow elephant ate raw bananas
Output:
Secret word found

Input:
you
you will often fail unless you try harder
Output:
Secret word not found

6. The Credit Card Verification Problem

You are provided with a credit card number with the length varying from 13 digits to 16 digits.
Each digit of the credit card is weighted by either 2 or 1. The credit card number must be zero-
filled on the left to create a sixteen digit number, and then the pattern starts with 2, alternating
with a 1. If the number multiplied by the weight results in a 2-digit number, each digit is added to
the sum. The final sum with the check digit should be a multiple of 10.

Example:

5 4 9 9 0 0 1 1 0 0 1 2 0 0 3 4

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1+0 +4 +1+8 +9 +0 +0 +2 +1 +0 +0 +2 +2 +0 +0 +6 +4 =40

40 mod 10 = 0. If the last digit did not result in a number divisible by 10, the credit card
number is invalid.

Input Format: The user will provide you with a credit card number without spaces.

Output Format: The program will return "Valid" or "Invalid" depending on the success or failure of
the check digit.

Input:
5499001100120034
Output:
Valid

Input:
5499001100120036
Output:
Invalid

7. The library problem:
Write a program to solve the following problem: A library wants a program that will calculate the
due date for a book on the basis of the issue date. The no. of days for which the book is issued is
decided by the librarian at the time of issuing the book. For e.g. If the librarian enters the current
date as 14-01-2000 and the no of days in which the book is due as 15, then your program should
calculate the due date and give the output as 29-01-2000. Your program should accept the

 176

current date (day, month, year) and the number of issue days as input and generate the due date
as output.

8. The Comment Removal problem

Write a C program which reads the contents of a file containing a C program and removes all
comments from the program.

9. The Histogram problem

Write a C program which reads the contents of a text file and generates a histogram of
frequencies of all alphabets in the file. Use * to draw the histogram bars.

10. The Cryptarithmetic puzzle

 “Cryptarithmetic” puzzles are puzzles in which one gets problems like these
 hello
+ there

 world
and is asked to assign digits to each letter so that the resulting addition is correct. Each digit from
0 to 9 must be used at most once, and the leading digits may not be 0. In the above cases, for
example, we can get the solutions
 56442
+ 15606

 72048
Write a program to find a solution to cryptarithmetic problems for which the input consists of
triples of strings each containing up to 128 lower-case letters and the output is in the form given in
the sample below.
For the input Produce the output
hello there world hello 56442

+ there + 15606
------- -------
 world 72048

11. The Compression problem

Write a program which compresses a text file such that consecutive occurrences of specific
character are replaced by the character followed by a digit indicating the number of times the
character occurs. Replace only if the character occurs 3 or more times consecutively. For
example, if the input text is “aath1111yy66666kkk baabbbbdg”, the output should be
“aath14yy65k3 4baab4dg”. Write a decompression program which reads a compressed file and
generates the original text.

12. The 4 queens problem

This problem is to place 4 queens on a 4X4 chessboard such that no two queens can attack. i.e.
No two queens are on the same row, same column or diagonal. Write a program to generate all
possible valid placements. One possible solution is shown below.

 177

 Q
 Q
Q
 Q

The output is a set of column numbers { c1, c2, c3, c4} such that cj is the column number in which
Queen j is placed (in row j). For the above example, the output is {2,4,1,3}. Extend your program
for n queens.

Signature of the instructor

Date

/ /

Assignment Evaluation Signature

 0: Not done 2: Late Complete 4: Complete

1: Incomplete 3: Needs improvement 5: Well Done

 178

Appendix A

1. Configuring The NFS Server

Here are the steps to configure the NFS server in this scenario:
1. Edit the /etc/exports file to allow NFS mounts of the /home directory with read/write access.
/home *(rw,sync)
2. Let NFS read the /etc/exports file for the new entry, and make /home available to the network
with the exportfs command.
[root@bigboy tmp]# exportfs -a
3. Make sure the required nfs, nfslock, and portmap daemons are both running and configured to
start after the next reboot.
[root@bigboy tmp]# chkconfig nfslock on
[root@bigboy tmp]# chkconfig nfs on
[root@bigboy tmp]# chkconfig portmap on
[root@bigboy tmp]# service portmap start
[root@bigboy tmp]# service nfslock start
[root@bigboy tmp]# service nfs start
After configuring the NFS server, we have to configure its clients, This will be covered next.

2. Configuring The NFS Client

You also need to configure the NFS clients to mount their /home directories on the NFS server.
1. Make sure the required netfs, nfslock, and portmap daemons are running and configured to
start after the next reboot.
[root@smallfry tmp]# chkconfig nfslock on
[root@smallfry tmp]# chkconfig netfs on
[root@smallfry tmp]# chkconfig portmap on
[root@smallfry tmp]# service portmap start
[root@smallfry tmp]# service netfs start
[root@smallfry tmp]# service nfslock start
2. Keep a copy of the old /home directory, and create a new directory /home on which you'll
mount the NFS server's directory.
[root@smallfry tmp]# mv /home /home.save
[root@smallfry tmp]# mkdir /home
3. Make sure you can mount bigboy's /home directory on the new /home directory you just
created. Unmount it once everything looks correct.
[root@smallfry tmp]# mount 192.168.1.100:/home /home/
[root@smallfry tmp]# ls /home
 [root@smallfry tmp]# umount /home
4. Start configuring autofs automounting. Edit your /etc/auto.master file to refer to file
/etc/auto.home for mounting information whenever the /home directory is accessed. After five
minutes, autofs unmounts the directory.
#/etc/auto.master
/home /etc/auto.home --timeout 600
5. Edit file /etc/auto.home to do the NFS mount whenever the /home directory is accessed. If the
line is too long to view on your screen, you can add a \ character at the end to continue on the
next line.
#/etc/auto.home
* -fstype=nfs,soft,intr,rsize=8192,wsize=8192,nosuid,tcp \
 192.168.1.100:/home:&
6. Start autofs and make sure it starts after the next reboot with the chkconfig command.
[root@smallfry tmp]# chkconfig autofs on
[root@smallfry tmp]# service autofs restart

3. Configuring The NIS Server

1. Edit Your /etc/sysconfig/network File

 179

You need to add the NIS domain you wish to use in the /etc/sysconfig/network file. For the school,
call the domain NISNETWORK.
#/etc/sysconfig/network
NISDOMAIN="NISNETWORK"
2. Edit Your /etc/yp.conf File
NIS servers also have to be NIS clients themselves, so you'll have to edit the NIS client
configuration file /etc/yp.conf to list the domain's NIS server as being the server itself or localhost.
/etc/yp.conf - ypbind configuration file
ypserver 127.0.0.1

4. Start The Key NIS Server Related Daemons

Start the necessary NIS daemons in the /etc/init.d directory and use the chkconfig command to
ensure they start after the next reboot.
[root@bigboy tmp]# service portmap start
[root@bigboy tmp]# service yppasswdd start
[root@bigboy tmp]# service ypserv start
[root@bigboy tmp]# chkconfig portmap on
[root@bigboy tmp]# chkconfig yppasswdd on
[root@bigboy tmp]# chkconfig ypserv on

5. Initialize Your NIS Domain

Now that you have decided on the name of the NIS domain, you'll have to use the ypinit
command to create the associated authentication files for the domain. You will be prompted for
the name of the NIS server, which in this case is bigboy.
With this procedure, all nonprivileged accounts are automatically accessible via NIS.
[root@bigboy tmp]# /usr/lib/yp/ypinit -m
At this point, we have to construct a list of the hosts which will run NIS
servers. bigboy is in the list of NIS server hosts. Please continue to add
the names for the other hosts, one per line. When you are done with the
list, type a <control D>.
 next host to add: domainname
 next host to add:
The current list of NIS servers looks like this:

domainname

Is this correct? [y/n: y] y
We need a few minutes to build the databases...

6. Start The ypbind and ypxfrd Daemons

You can now start the ypbind and the ypxfrd daemons because the NIS domain files have been
created.
[root@bigboy tmp]# service ypbind start
Listening for an NIS domain server.
[root@bigboy tmp]# service ypxfrd start
[root@bigboy tmp]# chkconfig ypbind on
[root@bigboy tmp]# chkconfig ypxfrd on

7. Configuring The NIS Client

Now that the NIS server is configured, it's time to configure the NIS clients. There are a number of
related configuration files that you need to edit to get it to work. Take a look at the procedure.
1. Run authconfig
The authconfig or the authconfig-tui program automatically configures your NIS files after
prompting you for the IP address and domain of the NIS server.
[root@smallfry tmp]# authconfig-tui

 180

Once finished, it should create an /etc/yp.conf file that defines, amongst other things, the IP
address of the NIS server for a particular domain. It also edits the /etc/sysconfig/network file to
define the NIS domain to which the NIS client belongs.
2. Start The NIS Client Related Daemons
Start the ypbind NIS client, and portmap daemons in the /etc/init.d directory and use the chkconfig
command to ensure they start after the next reboot. Remember to use the rpcinfo command to
ensure they are running correctly.
[root@smallfry tmp]# service portmap start
[root@smallfry tmp]# service ypbind start

8. Adding NIS Users

[root@bigboy tmp]# useradd -g users nisuser
[root@bigboy tmp]# passwd nisuser
[root@bigboy tmp]# cd /var/yp
[root@bigboy yp]# make

9. Initializing Database (Postgresql)

1. Steps to Initialize and configure Database
chown postgres /var/lib/pgsql/data
su – postgres
initdb –D /var/lib/pgsql/data
chkconfig postgresql on
service postgresql start

2. Configuration Files
In pg_hba.conf file we have to define
* max_connection allowed
* port
postgresql.conf -This file contents Client Authentication Configuration. In this file we have to
define Database name and database owner

 181

References

1. Forouzan B. and Gilbert R, “Structured Programming approach using C”,
2nd Edition , Thomson learning Publications

2. Brian W. Kernighan and Dennis M. Ritchie, “The C Programming
Language”, Second Edition, Prentice Hall, Englewood Cliffs, NJ,

3. Herbert Schildt, “The Complete Reference – C”, Fourth Edition, Osborne
Publications

4. Ramez Elmasri and S. Navathe, “Fundamentals of Database Systems”, 4th
Edition, Pearson Education

5. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database
System Concepts”, 5th Edition. McGraw-Hill

6. Raghu Ramakrishnan and Johannes Gehrke , “Database Management
Systems” , McGraw-Hill

7. Sumitabha Das, " UNIX Concepts and Applications" Tata Mcgraw Hill
8. Practical PostgreSQL, O’Reilly Publications
9. MS-DOS Manual

