B.B.Waphare/ Elixir Appl. Math. 72 (2014) 25567-25576

Available online at www.elixirpublishers.com (Elixir International Journal)

Applied Mathematics

Elixir Appl. Math. 72 (2014) 25567-25576

The convolution product associated with the Bessel type wavelet transform

B.B.Waphare

MAEER's MIT ACSC Alandi, Pune - 412 105, Maharashtra, India.

ARTICLE INFO

Article history: Received: 23 May 2014; Received in revised form: 19 June 2014: Accepted: 4 July 2014;

ABSTRACT

In this paper the convolution product associated with the Bessel type wavelet transformation is investigated. Certain norm inequalities for the convolution product are established.

© 2014 Elixir All rights reserved

Keywords

Bessel type wavelet transform, Convolution product, Hankel type transformation, Hankel type translation.

Introduction

Hankel convolution has been studied by many authors in recent past. Following Cholewinski [1], Haimo [2], Hirschman Jr. [3], the Hankel type convolution for the following form of the Hankel type transformation of a function $f \in L^1_{\sigma}(I)$, where I = $(0,\infty)$ and

$$L^{1}_{\sigma}(I) = \left\{ f \colon \int_{0}^{\infty} |f(x)| \, d\sigma(x) < \infty \left\{, \qquad I = (0, \infty) \right\}. \right.$$

Namely,

$$(h_{\alpha,\beta}f)(x) = \tilde{f}(x) = \int_0^\infty j_{\alpha-\beta}(xt) f(t) \, d\sigma(t) ,$$
(1.1)
where

$$j_{\alpha-\beta}(x) = 2^{-2\beta} \Gamma(2\alpha) x^{2\beta} J_{-2\beta}(x) and J_{\lambda}(x)$$

is the Bessel function of first kind and of order λ . Here

$$d\sigma(t) = rac{t^{2(lpha-eta)}}{2^{-2eta} \Gamma(2lpha)} dt$$

We say that $f \in L^p_{\sigma}(I), 1 \le p < \infty$, if

$$\|f\|_{p,\sigma} = \left(\int_{0}^{\infty} |f(x)|^{p} d\sigma(x)\right)^{\frac{1}{p}} < \infty.$$

If $f \in L^1_{\sigma}(I)$ and $h_{\alpha,\beta} f \in L^1_{\sigma}(I)$ then the inverse Hankel type transform is given by

$$f(x) = \left(h_{\alpha,\beta}^{-1}\left[\tilde{f}\right]\right)(x) = \int_0^\infty j_{\alpha-\beta}\left(xt\right) \left(h_{\alpha,\beta}f\right)(t) \, d\sigma(t)$$
(1.2)

If $f \in L^1_{\sigma}(I)$, $g \in L^1_{\sigma}(I)$ then the Hankel type convolution is defined by

$$(f #g) (x) = \int_0^\infty (\tau_x f) (y) g(y) d\sigma(y),$$
(1.3)

where the Hankel type translation τ_x is given by

$$(\tau_{x}f)(y) = \tilde{f}(x,y) = \int_{0}^{\infty} D(x,y,z) f(x) \, d\sigma(z), \tag{1.4}$$

where

Tele: E-mail addresses: balasahebwaphare@gmail.com

^{© 2014} Elixir All rights reserved