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Abstract

In this paper we consider a singular differential operator Ba,b,n on the half line which
generalizes the Bessel operator. We construct and investigate a new continuous wavelet
transform on [0,∞] tied to Ba,b,n by using harmonic analysis tools corresponding to
Ba,b,n. Further we this wavelet transform to invert an intervening operator between

Ba,b,n and the second derivative operator Dx = d2

dx2
.

Keywords: Singular differential operator, generalized wavelets, generalized contin-
uous wavelet transform.
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1 Introduction

Recent years wavelet transform has studied by many mathematicians, engineers and re-
searchers. Which has wide applications in engineering, medicals and mathematics. In
the classical framework, the notion of wavelet was first introduced by J. Morlet a French
petroleum engineer at ELF-Aquitaine in connection with his study of seismic traces. The
mathematical foundations were given by A. Grossmann and J. Morlet in [5]. The harmonic
analyst Y. Meyer and many other mathematicians become aware of this theory and they
recognized many classical results inside it (see [2, 8, 9]). Classical wavelets have wide ap-
plications ranging from signal analysis in geophysics and acoustics to quantum theory and
pure mathematics (see [3, 4, 7] and the references therein). In this paper we consider the
second order singular differential operator on the half line.

Ba,b,nf(x) = D2
xf +

a− b
x

Dxf −
4n(a−b−1

2
+ n)

x2
f(x), Dx ≡

d

dx

where (a− b) > 0 and n = 0, 1, 2, · · · For n = 0, we have the following differential operator

Ba,bf(x) = D2
xf +

a− b
x

Dxf,Dx ≡
d

dx
,

which is referred to as the Bessel type operator of order a−b−1
2

. A well known harmonic
analysis on the half line generated by the Bessel type operator Ba,b is expressed by Trimeche
in [14].
Following [1], it can be shown that the integral transform

f(x) =
2Γ(a−b−1

2
+ 2n+ 1)

√
πΓ(4n+a−b

2
)

∫ 1

0

f(tx)(1− t2)2n+a−b−2
2 dt
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is a topological isomorphism between two suitable functional spaces, satisfying the inter-
twining relation

χ ◦ d2

dx2
= Ba,b,n ◦ χ,

A completely new commutative harmonic analysis on the half line related to the differential
operator Ba,b,n was initiated through the intertwining operator χ. Our aim is to extend
the classical theory of wavelets to the differential operator Ba,b,n. More explicitly, we call
generalized wavelet each function g in a suitable functional space, satisfying the admissibility
condition

0 < Cg =

∫ ∞
0

∣∣∣
FBa,b,n

(g)(λ)
∣∣∣2 dλ
λ
<∞,

where FBa,b,n
is the generalized Fourier transform related to Ba,b,n given by

FBa,b,n
(g)(λ) =

∫ ∞
0

f(x)φλ(x)xa−bdx,

with φλ(x) = x2n ja−b−1+4n(λx)

2
, where j is the normalized spherical Bessel type function of

index ν.
With a single generalized wavelet g we construct by dilation and translation a family of
generalized wavelets by putting

gα,β(x) =
1

αa−b+1+2n
T β(gα)(x), α > 0, β ≥ 0,

where gα(x) = g(x/α) and T β denote the generalized translation operators tied to the
differential operator Ba,b,n.
The generalized continuous wavelet transform associated with Ba,b,n is defined for regular
functions f on [0,∞) by

Φg(f)(α, β) =

∫ ∞
0

f(x)gα,β(x)xa−bdx.

2 Preliminaries

In this section we recapitulate some facts about harmonic analysis related to the Bessel type
operator Ba,b. We cite here as briefly as possible, only those properties actually required for
the discussion. For more detail we refer to [14].
Here we use the notations:

‖ · ‖p,a,b,2n ≡ ‖ · ‖p,a−b−1
2

+2n

Lpa,b,2n ≡ Lpa−b−1
2

+2n

dµa,b,2n ≡ dµa−b−1
2

+2n, µa,b,2n = µa−b−1+4n
2

Wa,b,2n ≡ Wa−b−1
2

+2n
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τxa,b,2n ≡ τxa−b−1
2

+2n

Ra,b,2n ≡ Ra−b−1
2

+2n

‖ · ‖1,a,b,2n ≡ ‖ · ‖1,a−b−1
2

+2n

Fa,b,2n ≡ Fa−b−1
2

+2n

Ca,b,2n
M−1g ≡ C

a−b−1+4n
2

M−1g

(M−1g)a,b,2nα,β ≡ (M−1g)
a−b−1+4n

2
α,β

Sa,b,2nM−1g( ) ≡ S
a−b−1+4n

2

M−1g ( )

Throughout this section assume (a− b) > 0.
Define Bp

a,b, 1 ≤ p <∞ as the class of measurable function f on [0,∞) for which ‖f‖p,a,b <∞,
where

‖f‖p,a,b =

(∫ ∞
0

|f(x)|pxa−bdx
)1/p

, if p <∞

and
‖f‖∞,a,b = ‖f‖∞ = ess sup

x≥0
|f(x)|.

The Fourier-Bessel type transform of order a−b−1
2

is defined for a function f ∈ B1
a,b by

Fa,b(f)(λ) =

∫ ∞
0

f(x)ja−b−1
2

(λx)xa−bdx, λ ≥ 0, (2.1)

where ja−b−1
2

is the normalized spherical Bessel type function of index a−b−1
2

defined by

ja−b−1
2

(z) = Γ(
a− b+ 1

2
)
∞∑
n=0

(−1)n(z/2)2n

n!Γ(2n+a−b+1
2

)
, z ∈ C (2.2)

Proposition 2.1. (i) The Fourier-Bessel type transform Fa,b maps continuously and in-
vectively L1

a,b into the space C0([0,∞)) (of continuous function on [0,∞) vanishing at
infinity).

(ii) If both f and Fa,b(f) are in L1
a,b then

f(x) =

∫ ∞
0

Fa,b(f)(λ)ja−b−1
2

(λx)dµa,b(λ),

for almost all x ≥ 0, where

dµa,b(λ) =
1

4
a−b−1

2

(
Γ(a−b+1

2
)
)2λ

a−bdλ (2.3)
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(iii) For every f ∈ L1
a,b

⋂
L2
a,b, we have∫ ∞

0

|f(x)|2xa−bdx =

∫ ∞
0

|Fa,b(f)(λ)|2dµa,b(λ).

(iv) The Fourier-Bessel type transform Fa,b extends uniquely to an isometric isomorphism
from L2

a,b onto L2([0,∞), µa,b). The inverse transform is given by

F−1
a,b (g)(x) =

∫ ∞
0

g(λ)ja−b−1
2

(λx)dµa,b(λ),

where the integral converges in L2
a,b.

The Bessel type translation operators τxa,b, x ≥ 0 are defined by

τxa,b(f)(y) = αa,b

∫ π

0

f(
√
x2 + y2 + 2xy cos θ)(sin θ)dθ, (2.4)

where

αa,b =
2Γ(a−b+1

2
)

√
πΓ(a−b

2
)

(2.5)

For x, y > 0, a change of variables yields

τxa,b(f)(y) =

∫ x+y

|x−y|
f(z)Wa,b(x, y, z)za−bdz, (2.6)

with

Wa,b(x, y, z) =
2

3−a+b
2 [Γ(a−b+1

2
)]2

√
πΓ(a−b

2
)

[(x+ y)2 − z2]
a−b−2

2 [z2 − (x− y)2]
a−b−2

2

(xyz)a−b−1
(2.7)

The Bessel type convolution product of two functions f, g on [0,∞) is defined by the relation.

f ?a,b g(x) =

∫ ∞
0

τxa,bf(y)g(y)ya−bdy, x ≥ 0. (2.8)

Proposition 2.2. (i) Let p ∈ [1,∞) and f ∈ Lpa,b. Then for all x ≥ 0, τxa,bf ∈ L
p
a,b and

‖τxa,bf‖p,a,b ≤ ‖f‖p,a,b.

(ii) Let p, q ∈ [1,∞) such that 1
p

+ 1
q

= 1. If f ∈ Lpa,b and g ∈ Lqa,b, then for every x ≥ 0 we
have ∫ ∞

0

τxa,bf(y)g(y)ya−bdy =

∫ ∞
0

f(y)τxa,bg(y)ya−bdy.

(iii) Let p, q, r ∈ [1,∞) such that 1
p

+ 1
q
−1 = 1

r
. If f ∈ Lpa,b and g ∈ Lqa,b, then f ?a,b g ∈ Lra,b

and
‖f ?a,b g‖r,a,b ≤ ‖f‖p,a,b‖g‖q,a,b.
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(iv) For f ∈ L1
a,b and g ∈ Lpa,b, p = 1 or 2, we have

Fa,b(f ?a,b g) = Fa,b(f)Fa,b(g).

Definition 2.1. We say that a function g ∈ L2
a,b is a Bessel type wavelet of order a−b−1

2
if

it satisfies the admissibility condition

0 < Ca,b
g =

∫ ∞
0

|Fα,β(g)(λ)|2dλ
λ
<∞. (2.9)

Definition 2.2. Let g ∈ L2
a,b be a Bessel type wavelet of order a−b−a

2
. The Bessel type

continuous wavelet transform is defined for suitable functions f on [0,∞) by

Sa,bg (f)(α, β) =

∫ ∞
0

f(x)ga,bα,β(x)xa−bdx, (2.10)

where α > 0, β ≥ 0,

ga,bα,β(x) =
1

aa−b+1
τ ba,b(gα)(x), (2.11)

and
gα(x) = g(x/a). (2.12)

The Bessel continuous wavelet transform has been investigated in depth in [14] from
which we call the following basic properties.

Theorem 2.1. Let g ∈ L2
a,b be a Bessel type wavelet type wavelet of order a−b−1

2
. Then

(i) For all f ∈ L2
a,b, we have the Planchevel formula∫ ∞

0

|f(x)|2xa−bdx =
1

Ca,b
g

∫ ∞
0

∫ ∞
0

|Sa,bg (f)(α, β)|2βa−bdβdα
α

(ii) Assume that ‖Fa,b(g)‖∞ <∞. For f ∈ L2
a,b and 0 < ε < δ <∞, the function

f ε,δ(x) =
1

Cg

∫ δ

ε

∫ ∞
0

Sa,bg (f)(α, β)ga,bα,β(x)βa−bdβ
dα

α
,

belongs to L2
a,b and satisfies

lim
ε→0

lim
δ→0
‖f ε,δ − f‖2,a,b = 0.

(iii) For f ∈ L1
a,b such that Fa,b(f) ∈ L1

a,b, we have

f(x) =
1

Ca,b
g

∫ ∞
0

(∫ ∞
0

Sa,bg (f)(α, β)ga,bα,β(x)βa−bdβ

)
dα

α
,

for almost all x ≥ 0.
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3 Harmonic analysis associated with Ba,b,n

From now onward, assume (a− b) > 0 and n = 0, 1, 2, · · · . Let M be the map defined by

Mf(x) = x2nf(x).

Let Lpa,b,n, 1 ≤ p <∞ be the class of measurable functions f on [0,∞) for which ‖f‖p,a,b,n =
‖M−1f‖p,a,b,2n <∞.

Remark 3.1. We notice that M is an isometric from Lpa,b,2n onto Lpa,b,2n.

3.1 Generalized Fourier transform

Let λ ∈ C and x ∈ R, put
φλ(x) = x2nja−b−1+4n

2
(λx), (3.1)

where ja−b−1+4n
2

is the normalized Bessel type function of index a−b−1+4n
2

given by (2.2). From

[1] recall the following properties.

Proposition 3.1. (i) φλ possesses the Laplace type integral representation

φλ(x) = αa,b,2nx
2n

∫ 1

0

cos (λtx)(1− t2)
a−b−2+4n

2 dt, (3.2)

where αa,b,2n is given by (2.5). (Note that here αa,b,2n means αa−b−1
2

+2n)

(ii) φλ satisfies the differential equation

Ba,b,nφλ = −λ2φλ,

(iii) For all λ ∈ C and x ∈ R,
|φλ(x)| ≤ x2ne|Imλ||x|.

Definition 3.1. The generalized Fourier transform is defined for a function f ∈ L1
a,b,n by

FBa,b,n
(f)(λ) =

∫ ∞
0

f(x)φλ(x)xa−bdx, λ ≥ 0 (3.3)

Remark 3.2. (i) By (3.1) and (3.3) observe that

FBa,b,n
= Fa,b,2n ◦M−1 (Fa,b,2n = Fa−b−1

2
+2n) (3.4)

where Fa,b,2n is the Fourier-Bessel type transform of order a−b−1+4n
2

given by (2.1).

(ii) If f ∈ L1
a,b,n, then FBa,b,n

(f) ∈ C0([0,∞)) and

‖FBa,b,n
(f)‖∞ ≤ ‖f‖1,a,b,n.
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Theorem 3.1. Let f ∈ L1
a,b,n such that FBa,b,n

(f) ∈ L1
a,b,2n (here L1

a,b,2n = L1
a−b−1

2
+2n

). Then

for almost all x ≥ 0,

f(x) =

∫ ∞
0

FBa,b,n
(f)(λ)φλ(x)dµa,b,2n(λ),

where µa,b,2n is given by (2.3).

Proof. From (3.1), (3.4) and Proposition 2.1(ii), we have∫ ∞
0

FBa,b,n
(f)(λ)φλ(x)dµa,b,2n(λ) = x2n

∫ ∞
0

Fa,b,2n(M−1f)(λ)ja−b−1+4n
2

(λx)dµa,b,2n(λ)

= x2nM−1f(x)

= f(x), for almost all x ≥ 0.

Thus proof is completed.

Theorem 3.2. (i) For every f ∈ L1
a,b,n

⋂
L2
a,b,n, we have the Plancherel formula∫ ∞

0

|f(x)|2xa−bdx =

∫ ∞
0

|FBa,b,n
(f)(λ)|2dµa,b,2n(λ)

(Here dµa,b,2n ≡ dµa−b−1
2

+2n)

(ii) The generalized Fourier transform FBa,b,n
extends uniquely to an isometric isomorphism

from L2
a,b,n onto L2([0,∞), µa,b,2n). The inverse transform is given by

F−1
Ba,b,n

(g)(x) =

∫ ∞
0

g(λ)φλ(x)dµa,b,2n(λ),

where the integral converges in L2
a,b,n.

Proof. Let f ∈ L1
a,b,n

⋂
L2
a,b,n. By (3.4) and proposition 2.1(iii), we have∫ ∞

0

|FBa,b,n
(f)(λ)|2dµa,b,2n(λ) =

∫ ∞
0

|Fa,b,2n(M−1f)(λ)|2dµa,b,2n(λ)

=

∫ ∞
0

|M−1f(x)|2xa−b+4ndx

=

∫ ∞
0

|f(x)|2xa−bdx

which gives (i).
The proof of (ii) is standard can be proved easily.
Thus proof is completed.
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3.2 Generalized convolution product

Definition 3.2. We define the generalized translation operators T x, x ≥ 0 by the relation

T xf(y) = (xy)2nτxa,b,2n(M−1f)(y), y ≥ 0, (3.5)

(Here τxa,b,2n ≡ τxa−b−1
2

+2n
)

where τxa,b,2n are the Bessel type translation operators of order a−b−1+4n
2

given by (2.4).

Remark 3.3. Assume that x, y > 0. Then according to (2.6) and (3.5) we have

T x(f)(y) =

∫ x+y

|x−y|
f(z)Wa,b,n(x, y, z)za−bdz,

with Wa,b,n = (xyz)2nWa,b,2n(x, y, z), where Wa,b,2n(x, y, z) is given by (2.7). (Here Wa,b,2n =
Wa−b−1

2
+2n).

Definition 3.3. The generalized convolution product of two functions f and g on [0,∞) is
defined by

f#g(x) =

∫ ∞
0

T xf(y)g(y)ya−bdy, x ≥ 0. (3.6)

Remark 3.4. Note that by (3.5) we have

f#g =M[(M−1f) ?a,b,2n (M−1g)], (3.7)

where ?a,b,2n is the Bessel convolution given by (2.8).

Proposition 3.2. (i) Let f ∈ Lpa,b,n, 1 ≤ p < ∞. Then for all x ≥ 0, the function
T xf ∈ Lpa,b,n, and

‖T xf‖p,a,b,n ≤ x2n‖f‖p,a,b,n.

(ii) For f ∈ Lpa,b,n, p = 1 or 2, we have

FBa,b,n
(T xf)(λ) = φλ(x)FBa,b,n

(f)(λ).

(iii) Let p, q ∈ [1,∞) such that 1
p

+ 1
q

= 1. If f ∈ Lpa,b,n and g ∈ Lpa,b,n, then∫ ∞
0

T xf(y)g(y)ya−bdy =

∫ ∞
0

f(y)T xg(y)ya−bdy.

(iv) Let p, q, r ∈ [1,∞) such that 1
p
+ 1

q
−1 = 1

r
. If f ∈ Lpa,b,n and g ∈ Lqa,b,n then f#g ∈ Lra,b,n

and
‖f#g‖r,a,b,n ≤ ‖f‖p,a,b,n‖g‖q,a,b,n.
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(v) For f ∈ L1
a,b,n and g ∈ Lpa,b,n, p = 1 or 2, we have

FBa,b,n
(f#g) = FBa,b,n

(f)FBa,b,n
(g).

Proof. (i) Using Proposition 2.2(i) and (3.7), we have

‖T xf‖p,a,b,n = x2n‖M ◦ τxa,b,2n ◦M−1(f)‖p,a,b,n
= x2n‖τxa,b,2n ◦M−1(f)‖p,a,b,2n
≤ x2n‖M−1f‖p,a,b,2n
= x2n‖f‖p,a,b,n.

(ii) Using Proposition 2.2(ii) and (3.1), (3.4) and (3.5), we have

FBa,b,n
(T xf)(λ) = Fa,b,2n ◦M−1 ◦ τx(f)(λ)

= x2nFa,b,2n ◦ τxa,b,2n ◦M−1(f)(λ)

= x2nja−b−a+4n
2

(λx)Fa,b,2n ◦M−1(f)(λ)

= φλ(x)FBa,b,n
(f)(λ).

(iii) Using Proposition 2.2(iii) and (3.5), we have∫ ∞
0

T xf(y)g(y)ya−bdy = x2n

∫ ∞
0

τxa,b,2n(M−1f)(y)M−1(g)(y)ya−b+4ndy

= x2n

∫ ∞
0

M−1f(y)τxa,b,2n(M−1g)(y)ya−b+4ndy

=

∫ ∞
0

f(y)T xg(y)ya−bdy.

(iv) By using Proposition 2.2(iv) and (3.7), we have

‖f#g‖r,a,b,n = ‖(M−1f) ?a,b,2n (M−1g)‖r,a,b,2n
≤ ‖M−1f‖p,a,b,2n‖M−1g‖q,a,b,2n
= ‖f‖p,a,b,n‖g‖q,a,b,n.

(v) By Proposition 2.2(v) and using (3.4) and (3.7), we have

FBa,b,n
(f#g) = Fa,b,2n[(M−1f) ?a,b,2n (M−1g)]

= Fa,b,2n(M−1f)Fa,b,2n(M−1g)

= FBa,b,n
(f)FBa,b,n

(g).

Thus proof is completed.
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3.3 Transmutation operators

We denote by ε(R) the space of C∞ even functions on R, provided with the topology of
compact convergence for all derivatives. For α > 0, Dα(R) denotes the space C∞ even
functions on R which are supported in [−a, a], equipped with the topology induced by ε(R).

Put D(R) =
⋃
α>0

Dα(R) endowed with the inductive limit topology. Let εn(R) (resp. Dn(R))

stand for the subspace of ε(R) (resp. D(R)) consisting of functions f such that f(0) = · · · =
f (2n−1)(0) = 0.

Definition 3.4. For a locally bounded function f on [0,∞), we define the integral transform
χ by

χf(x) = αa,b,2nx
2n

∫ 1

0

f(tx)(1− t2)
a−b−2+4n

2 dt (3.8)

where αa,b,2n is given by (2.5). (Here αa,b,2n = αa−b−1+4n
2

)

Remark 3.5. (i) For n = 0, χ reduces to the Riemann-Liouville integral transform of
order a−b−1

2
given by

Ra,b(f)(x) = αa,b

∫ 1

0

f(tx)(1− t2)
a−b−2

2 dt, x ≥ 0.

(ii) It is easily check that
χ =M◦Ra,b,2n (3.9)

(iii) From (3.2) and (3.8), we have

φλ(x) = χ(cos (λ))(x). (3.10)

Definition 3.5. We define the integral transform tχ for a smooth function f on [0,∞) by

tχf(y) = αa,b,2n

∫ ∞
y

f(x)(x2 − y2)
a−b−3+4n

2
dx

x2n−1
.

Remark 3.6. (i) For n = 0, tχ is just the Weyl integral transform of order (a−b−1
2

) given
by

Wa,b(f)(y) = αa,b

∫ ∞
y

f(x)(x2 − y2)
a−b−2

2 xdx, y ≥ 0,

(ii) It is easily seen that
tχ = Wa,b,2n ◦M−1. (3.11)

Proposition 3.3. (i) If f ∈ L∞([0,∞), dx) then χf ∈ L∞a,b,n and ‖χf‖∞,a,b,n ≤ ‖f‖∞.

(ii) If f ∈ L1
a,b,n then tχf ∈ L1([0,∞), dx) and ‖tχf‖1 ≤ ‖f‖1,a,b,n.
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(iii) For every f ∈ L∞([0,∞), dx) and g ∈ L1
a,b,n, we have the duality relation∫ ∞

0

χf(x)g(x)xa−bdx =

∫ ∞
0

f(y) tχg(y)dy

(iv) For all f ∈ L1
a,b,n, we have

F∆(f) = Fc ◦ tχ(f), (3.12)

where Fc is the cosine transform given by

Fc(f)(λ) =

∫ ∞
0

f(x) cos (λx)dx, λ ≥ 0

(v) Let f, g ∈ L1
a,b,n. Then

tχ(f#g) =t χf ? tχg,

where ? is the symmetric convolution product on [0,∞) defined by

h1 ? h2(x) =

∫ ∞
0

σx(h1)(y)h2(y)dy,

with

σx(h1)(y) =
1

2
[h1(x+ y) + h1(|x− y|)].

(vi) Let f ∈ L1
a,b,n and g ∈ L∞([0,∞), dx). Then

χ(tχf ? g) = f#(χg).

Proof. (i) By (3.9) and [[14], Equation (2.I.48)], we have

‖χf‖∞,a,b,n = ‖Ra,b,2nf‖∞ ≤ ‖f‖∞.

(ii) By (3.11) and [[14], Equation (2.II.3)], we have

‖tχf‖1 ≤ ‖M−1f‖1,a,b,2n = ‖f‖1,a,b,n.

(iii) By (3.9), (3.11) and [[14], Equation (2.II.2)], we have∫ ∞
0

χf(x)g(x)xa−bdx =

∫ ∞
0

Ra,b,2n(f)(x)M−1g(x)xa−b+4ndx

=

∫ ∞
0

f(y)Wa,b,2n(M−1g)(y)dy

=

∫ ∞
0

f(y) tχg(y)dy.
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(iv) By (3.4), (3.11) and [[14], Equation (5.II.14)], we have

Fc ◦ tχ(f) = Fc ◦Wa,b,2n ◦M−1(f)

= Fa,b,2n ◦M−1(f)

= F∆(f).

(v) By (3.7), (3.11) and [[14], Equation (5.II.15)], we have

tχ(f#g) = Wa,b,2n[(M−1f) ?a,b,2n (M−1g)]

= (Wa,b,2nM−1f) ? (Wa,b,2nM−1g)

= tχf ? tχg.

(vi) By (3.7), (3.9), (3.11) and [[14], Equation (7.IV.9)], we have

f#(χg) = M[(M−1f) ?a,b,2n (M−1χg)]

= M[(M−1f) ?a,b,2n (Ra,b,2ng)]

= MRa,b,2n[(Wa,b,2nM−1f) ? g]

= χ(tχf ? g).

Thus proof is completed.

χ and tχ are intervening operators between ∆ and the second derivative operator d2

dx2
by

virtue of the following theorem in [1].

Theorem 3.3. (i) The integral transform χ is an isomorphism from ε(R) onto εn(R) sat-
isfying the intervening relation

χ ◦ d2

dx2
(f) = ∆ ◦ χ(f), f ∈ ε(R).

(ii) The integral transform tχ is an isomorphism from Dn(R) onto D(R) satisfying the
intervening relation

d2

dx2
◦ tχ(f) =t χ ◦∆(f), f ∈ Dn(R).

4 Generalized Wavelets

In this section we obtain Plancherel formula, Calderm’s formula and inversion formula for
generalized wavelet.

Definition 4.1. A generalized wavelet is a function g ∈ L2
a,b,n satisfying the admissibility

condition

0 < Cg =

∫ ∞
0

|F∆(g)(λ)|2dλ
λ
<∞ (4.1)
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Remark 4.1. (i) Let 0 6= g ∈ L2
a,b,n satisfying the condition that there exist η > 0 such

that F∆(g)(λ)−F∆(g)(0) = O(λn), as λ→ 0. Then (4.1) is equivalent to F∆(g)(0) = 0.

(ii) By (2.9), (3.4) and (4.1), g ∈ L2
a,b,n is a generalized wavelet if and only if M−1g is a

Bessel wavelet of order a−b−1+4n
2

, and we have

Cg = CM−1g (4.2)

Note: For g ∈ L2
a,b,n and (a, b) ∈ (0,∞)× [0,∞), put

gα,β(x) =
1

αa−b+2n+1
T β(gα)(x) (4.3)

where gα is given by (2.12) and T β are the generalized translation operators defined by (3.5).

Proposition 4.1. For all α > 0 and β > 0, we have

gα,β(x) = (βx)2n(M−1)a,b,2nα,β (x) (4.4)

Proof. By making use of (2.11), (3.5) and (4.3), we have

gα,β(x) =
1

αa−b+2n+1
T β(gα)(x)

=
(βx)2n

αa−b+2n+1
τβa,b,2n(M−1gα)(x)

=
(βx)2n

αa−b+4n+1
τβa,b,2n(M−1g)α(x)

= (βx)2n(M−1g)a,b,2nα,β (x).

Thus proof is completed.

Definition 4.2. Let g ∈ L2
a,b,n be a generalized wavelet. We define for regular functions f

on [0,∞), the generalized continuous wavelet transform by

Φg(f)(α, β) =

∫ ∞
0

f(x)gα,β(x)xa−bdx, (4.5)

which can also be written in the form

Φg(f)(α, β) =
1

αa−b+2n+1
f#gα(β), (4.6)

where # is the generalized convolution product given by (3.6).
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Proposition 4.2. We have

Φg(f)(α, β) = β2nSa,b,2nM−1g(M
−1f)(α, β) (4.7)

Proof. From (2.10), (4.4) and (4.5), we deduce that

Φg(f)(α, β) =

∫ ∞
0

f(x)gα,β(x)xa−bdx

= β2n

∫ ∞
0

(M−1f)(x)(M−1g)a,b,2nα,β (x)xa−b+4ndx

= β2nSa,b,2nM−1g(M
−1f)(α, β).

Thus proof is completed.

Theorem 4.1. (Plancherel formula) Let g ∈ L2
a,b,n be a generalized wavelet. For every

f ∈ L2
a,b,n, we have the Plancherel formula∫ ∞

0

|f(x)|2xa−bdx =
1

Cg

∫ ∞
0

∫ ∞
0

|Φg(f)(α, β)|2βa−bdβdα
α

Proof. By using Theorem 2.1(i) and (4.2) and (4.7), we have∫ ∞
0

∫ ∞
0

|Φg(f)(α, β)|2βa−bdβdα
α

=

∫ ∞
0

∫ ∞
0

|Sa,b,2nM−1g(M
−1f)(α, β)|2βa−b+4ndβ

dα

α

= Ca,b,2n
M−1g

∫ ∞
0

|M−1f(x)|2xa−b+4ndx

= Cg

∫ ∞
0

|f(x)|2xa−bdx.

This completes the proof.

Theorem 4.2. (Calderm’s formula) Let g ∈ L2
a,b,n be a generalized wavelet such that ‖F∆(g)‖∞ <

∞. Then f ∈ L2
a,b,n and 0 < ε < δ <∞, the function

f ε,δ(x) =
1

Cg

∫ δ

ε

∫ ∞
0

Φg(f)(α, β)gα,β(x)βa−bdβ
dα

α
∈ L2

a,b,n

and satisfies
lim
ε→ 0
δ → 0

‖f ε,δ − f‖2,a,b,n = 0.

Proof. By using (4.2), (4.4) and (4.7), we have

f ε,δ(x) =
x2n

Ca,b,2n
M−1g

∫ δ

ε

∫ ∞
0

Sa,b,2nM−1g(M
−1f)(α, β)(M−1g)a,b,2nα,β βa−b+4ndβ

dα

α
.

The result follows from Theorem 2.1(ii). Thus proof is completed.
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Theorem 4.3. (Inversion formula) Let g ∈ L2
a,b,n be a generalized wavelet. If f ∈ L1

a,b,n and
F∆(f) ∈ L1

a,b,2n then we have

f(x) =
1

Cg

∫ ∞
0

(∫ ∞
0

Φg(f)(α, β)gα,β(x)βa−bdβ

)
dα

α

for almost all x ≥ 0.

Proof. By using (4.2), (4.4) and (4.7), we have

1

Cg

∫ ∞
0

(∫ ∞
0

Φg(f)(α, β)gα,β(x)βa−bdβ

)
dα

α

=
x2n

Ca,b,2n
M−1g

∫ δ

ε

(∫ ∞
0

Sa,b,2nM−1g(M
−1f)(α, β)(M−1g)a,b,2nα,β βa−b+4ndβ

)
dα

α
.

Now we can use Theorem 2.1(iii) to complete the proof.
Thus proof is completed.

5 Inversion of the intertwining operator tχ through the

generalized wavelet transform

In this section we obtain inversion formulas for tχ involving generalized wavelets. But before
this we need to prove some preliminary lemmas.

Lemma 5.1. Let 0 6= g ∈ L1
⋂
L2([0,∞), dx) such that Fc(g) ∈ L1([0,∞), dx) and satisfying

there exists η > a−b−1+4n
2

such that

Fc(g)(λ) = o(λn) (5.1)

as λ→ 0. Then χg ∈ L2
a,b,n and

F∆(χg)(λ) =
2a−b+4n(Γ(a−b+4n+1

2
))2

πλa−b+4n
Fc(g)(λ).

Proof. We have

g(x) =
2

π

∫ ∞
0

Fc(g)(λ) cos (λx)dλ

Now, by (3.10), we have

χg(x) =

∫ ∞
0

h(λ)φλ(x)dµa,b,2n(λ), (5.2)

where

h(λ) =
2a−b+4n(Γ(a−b+4n+1

2
))2

πλa−b+4n
Fc(g)(λ),
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and µa,b,2n is given by (2.3). Clearly h ∈ L1([0,∞), µa,b,2n). Thus in view of (5.2) and
Theorem 3.2, it is sufficient to prove that h ∈ L2([0,∞), µa,b,2n). We have∫ ∞

0

|h(λ)|2dµa,b,2n(λ) = m(a, b, n)

∫ ∞
0

λ−(a−b+4n)|Fc(g)(λ)|2dλ

= m(a, b, n)

(∫ 1

0

+

∫ ∞
1

)
λ−(a−b+4n)|Fc(g)(λ)|2dλ

= m(a, b, n)(I1 + I2),

where m(a, b, n) = 4
a−b+1

2 π−2(Γ(a−b+4n+1
2

))2. Now by (5.1) there exist a positive constant k
such that

I1 ≤ k

∫ 1

0

λ2η−(a−b+4n)dλ =
k

2[η − (a−b−1+4n
2

)]
<∞.

Thus from the Plancherel theorem for the cosine transform, we obtain

I2 =

∫ ∞
1

λ−(a−b+4n)|Fc(g)(λ)|2dλ

≤
∫ ∞

0

|Fc(g)(λ)|2dλ

=
π

2

∫ ∞
0

|g(x)|2dx <∞.

Thus proof is completed.

Lemma 5.2. Let 0 6= g ∈ L1
⋂
L2([0,∞), dx) such that Fc(g) ∈ L1([0,∞), dx) and satisfying

there exists η > (a− b+ 4n) such that

Fc(g)(λ) = o(λn) (5.3)

as λ→ 0. Then χg ∈ L2
a,b,n is a generalized wavelet and F∆(χg) ∈ L∞((0,∞), dx).

Proof. By making use of equation (5.3) and Lemma 5.1, we can easily see that χg ∈
L2
a,b,n, F∆(χg) is bounded and

F∆(χg)(λ) = o(λη−(a−b+4n)) as λ→ 0.

Thus by Remark 4.1(i), the function χg satisfies admissibility condition (4.1). Thus proof is
completed.

The classical continuous wavelet transform on [0,∞) is defined for suitable functions by

Wg(f)(α, β) =
1

α

∫ ∞
0

f(x)σβ(gα)(x)dx, (5.4)
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where α > 0, β ≥ 0 and g ∈ L∞((0,∞), dx) is a classical wavelet on [0,∞) i.e. satisfying
the admissibility condition

0 < C(g) =

∫ ∞
0

|Fc(g)(λ)|2dλ
λ
<∞ (5.5)

A more complete and detailed discussion of the properties of the classical continuous wavelet
transform on [0,∞) can be found in [14].

Remark 5.1. (i) According to [14], each function satisfying the conditions of Lemma 5.2
is a classical wavelet on [0,∞).

(ii) In view of (3.12), (4.1) and (5.5), g ∈ D(R) is a generalized wavelet if and only if tχg
is a classical wavelet and we have c(tχg) = cg.

The following statement provides a formula relating the generalized continuous wavelet
transform to the classical one.

Lemma 5.3. Let g be as in Lemma 5.2. Then for all f ∈ Lpa,b,n, p = 1 or 2, we have

Φχg(f)(α, β) =
1

αa−b+4n
χ[Wg(

tχf)(α, ·)](β).

Proof. We have by (4.6) that

Φχg(f)(α, β) =
1

αa−b+1+4n
f#[χ(gα)](β)

=
1

αa−b+1+4n
χ[tχf ? gα](β)

=
1

αa−b+4n
χ[Wg(

tχf)(α, ·)](β).

This completes the proof.

A combination of Theorems 4.2-4.3 with Lemmas 5.2-5.3 yields

Theorem 5.1. Let g be as in Lemma 5.2. Then we have the following inversion formulas
for tχ

(i) If f ∈ L1
a,b,n and F∆(f) ∈ L1

a,b,2n then for almost all x ≥ 0 we have

f(x) =
1

Cχg

∫ ∞
0

(∫ ∞
0

χ[Wg(
tχf)(α, ·)](β)(χg)α,β(x)βa−bdβ

)
dα

αa−b+1+4n
.
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(ii) For f ∈ L1
a,b,n

⋂
L2
a,b,n and 0 < ε < δ <∞, the function

f ε,δ(x) =
1

Cχg

∫ δ

ε

∫ ∞
0

χ[Wg(
tχf)](α, ·)](β)(χg)α,β(x)βa−bdβ

dα

αa−b+1+4n

satisfies
lim
ε→ 0
δ → 0

‖f ε,δ − f‖2,a,b,n = 0.

Remark 5.2. (i) If we set a = α + 3
4
, b = −α − 1

4
throughout this paper then it reduces

to the results studied by R.F. Al Subaie and M.A. Mourou in the paper entitled ”The
continuous wavelet transform for a Bessel type operator on the half line” published in
Mathematics and Statistics 1(4): 196-203, 2013.

(ii) Author claims that the result obtained in this paper are more general than that of Al
Subaie and M.A. Mourou.
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