UGC Approved Journal

RESEARCH PAPER

Available online at http://www.jgrma.info

CONTINUITY OF BESSEL TYPE WAVELET TRANSFORM AND RELATED RESULTS

B.B. Waphare and P.D. Pansare
MIT Arts, Commerce and Science College, Alandi (D), Pune, India
balasahebwaphare@gmail.com, pradippansare@gmail.com

Abstract: In this paper, the continuity of the Bessel type wavelet transform B_{ψ} of the function ϕ in terms of a mother wavelet ψ is investigeted on certain distribution spaces when the Hankel type transform of ψ defined by $\hat{\psi}(x, y) \in C^{\infty}\left(\mathrm{R}_{+}^{2}\right)$. Finally a sobolev type space boundedness result is obtained.

Mathematics subject classification: 44A35, 33A40, 42C10.
Keywords: Bessel type wavelet transform, Hankel type transform, Bessel type operator, Sobolev type space.

INTRODUCTION

The Hankel type transformation is defined by

$$
\begin{equation*}
\hat{\phi}(x)=\left(h_{\alpha, \beta} \phi\right)(x)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y) \phi(y) d y, x \in(0, \infty) \tag{1}
\end{equation*}
$$

where $J_{\alpha-\beta}(x)$ represents the Bessel type function of the first kind and order $\alpha-\beta$. Throughout this paper we shall assume that $(\alpha-\beta) \geq-1 / 2$ and $\phi \in L^{1}(0, \infty)$. The inversion formula for (1) [[2], p.239] is given by

$$
\begin{equation*}
\phi(y)=\int_{0}^{\infty}(x y)^{\alpha+\beta} J_{\alpha-\beta}(x y)\left(h_{\alpha, \beta} \phi\right)(x) d x, y \in(0, \infty) \tag{2}
\end{equation*}
$$

Zemanian[6] has extended the above transformation to distributions. For every $(\alpha-\beta) \in(0, \infty)$, he introduced the space $H_{\alpha, \beta}(0, \infty)$ consisting of all infinitely differentiable functions ϕ defined on $(0, \infty)$, such that for all $m, k \in \mathrm{~N}_{0}$, the quantities

$$
\begin{equation*}
\rho_{m, k}^{\alpha, \beta}=\sup _{x \in(0, \infty)}\left|x^{m}\left(x^{-1} \frac{d}{d x}\right)^{k} x^{2 \beta-1} \phi(x)\right|<\infty . \tag{3}
\end{equation*}
$$

Using theory of $H_{\alpha, \beta}$ space of Zemanian[6], Pathak and Dixit[3] investigated the Bessel type wavelet transform B_{ψ} defined as follows:

$$
\begin{equation*}
\left(B_{\psi} \phi\right)(b, a)=\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \hat{\phi}(u) \overline{\hat{\psi}(a u)} d u \tag{4}
\end{equation*}
$$

where $\hat{\phi}(u)=\left(h_{\alpha, \beta} \phi\right)(u)$.
Let us assume that for every real number $\lambda, \hat{\psi}$ satisfies

$$
\begin{equation*}
(1+x)^{l}\left|\left(x^{-1} \frac{d}{d x}\right)^{a}\left(y^{-1} \frac{d}{d x}\right)^{b} \hat{\psi}(x y)\right| \leq C_{a, b, l}(1+y)^{\lambda-b} \tag{5}
\end{equation*}
$$

for all $a, b, l \in \mathrm{~N}_{0}$, where $C_{a, b, l}>0$ is a constant and $\hat{\psi}$ denotes the Hankel type transform of the basic wavelet ψ. The class of all such wavelet $\hat{\psi}$ is denoted by H^{λ}.

This permits us to define the Hankel type transform with respect to x of $\hat{\psi}(a x)$

$$
\begin{equation*}
h_{\alpha, \beta}\left[\left(h_{\alpha, \beta}(\psi)\right)\right](a \xi)=\int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)\left(h_{\alpha, \beta} \psi\right)(a x) d x . \tag{6}
\end{equation*}
$$

We follow the notations and terminology of $[2,4,5,7]$.
The differential operator $\Delta_{\alpha, \beta, x}$ is defined by

$$
\begin{align*}
& \Delta_{\alpha, \beta, x}=x^{2 \beta-1} D_{x} x^{4 \alpha} D_{x} x^{2 \beta-1} \\
& =(2 \beta-1)(4 \alpha+2 \beta-2) x^{4(\alpha+\beta-1)}+2(2 \alpha+2 \beta-1) x^{4 \alpha+4 \beta-3} D_{x} \\
& +x^{2(2 \alpha+2 \beta-1)} D_{x}^{2} . \tag{7}
\end{align*}
$$

If we set $\alpha=\frac{1}{4}+\frac{\mu}{2}, \beta=\frac{1}{4}-\frac{\mu}{2}$ in (7), it reduces to $x^{-\mu-\frac{1}{2}} D_{x} x^{2 \mu+1} D_{x} x^{-\mu-\frac{1}{2}} \equiv S_{\mu}=D_{x}^{2}+\frac{\left(1-4 \mu^{2}\right)}{4 x^{2}}$ which is studied in Zemanian[7].

From [2, 4], we know that for any $\phi \in H_{\alpha, \beta}$,

$$
\begin{gather*}
h_{\alpha, \beta}\left(\Delta_{\alpha, \beta} \phi\right)=-y^{2} h_{\alpha, \beta} \phi \tag{8}\\
\left(x^{-1} \frac{d}{d x}\right)^{k}(\psi \phi)=\sum_{i=0}^{k}\binom{k}{i}\left(x^{-1} \frac{d}{d x}\right)^{i} \phi\left(x^{-1} \frac{d}{d x}\right)^{k-i} \psi \tag{9}
\end{gather*}
$$

also from [2], we have

$$
\begin{equation*}
\Delta_{\alpha, \beta, x}^{r} \phi(x)=\sum_{j=0}^{r} b_{j} x^{2 j+2 \alpha}\left(x^{-1} \frac{d}{d x}\right)^{r+j}\left(x^{2 \beta-1} \phi(x)\right) \tag{10}
\end{equation*}
$$

where b_{j} are constants depending only on $\alpha-\beta$.
Definition 1.1 A tempered distribution $\phi \in H_{\alpha, \beta}^{\prime}(0, \infty)$ is said to belong to the Sobolev space $G_{\alpha, \beta}^{s, p}, s,(\alpha-\beta) \in(0, \infty), 1 \leq p<\infty$, if its Hankel type transform $h_{\alpha, \beta} \phi$ coresponds to a locally integrable function over $(0, \infty)$ such that

$$
\begin{equation*}
\|\phi\|_{G_{\alpha, \beta}^{s, p}(0, \infty)}=\left(\int_{0}^{\infty}\left|\left(1+\xi^{2}\right)^{s}\left(h_{\alpha, \beta} \phi\right)(\xi)\right|^{p}\right)^{1 / p}<\infty . \tag{11}
\end{equation*}
$$

THE BESSEL TYPE WAVELET TRANSFORM

Lee[1] has defined the space $B_{\alpha, \beta, b}$ and $\Upsilon_{\alpha, \beta, b}^{2 q}$ as follows:
Definition 2.1 We say that $\phi \in B_{\alpha, \beta, b}$ if ϕ is smooth function $\phi(x)=0$ for $x>b$ and

$$
\begin{equation*}
\rho_{b, k}^{\alpha, \beta}(\phi)=\sup _{x \in(0, \infty)}\left|\left(x^{-1} \frac{d}{d x}\right)^{k} x^{2 \beta-1} \phi(x)\right|<\infty, k=0,1,2, \ldots \tag{12}
\end{equation*}
$$

where $b>0$ is a constant and $(\alpha-\beta)$ is a real number.
Definition 2.2 For each $q=1,2,3, \ldots, \Phi \in \Upsilon_{\alpha, \beta, b}^{2 q}$ if $z^{2 \beta-1} \Phi$ is an even entire function and

$$
\begin{equation*}
\lambda_{b, k}^{\alpha, \beta, 2 q}(\Phi)=\sup _{z=x+i y}\left|e^{-b y^{2 q}} z^{2 q+2 \beta-1} \Phi(z)\right|<\infty, k=0,1,2, \ldots \tag{13}
\end{equation*}
$$

where $\Phi=\left(h_{\alpha, \beta} \phi\right), b>0$ is constant and $(\alpha-\beta)$ is a real number.
The topology of the spaces $B_{\alpha, \beta, b}$ and $\Upsilon_{\alpha, \beta, b}^{2 q}$ are generated by the seminorms $\left\{\rho_{b, k}^{\alpha, \beta}\right\}_{k=0}^{\infty}$ and $\left\{\lambda_{b, k}^{\alpha, \beta, 2 q}\right\}_{k=0}^{\infty}$ respectively. From Definitions (2.1) and (2.2), it follows that $B_{\alpha, \beta, b}$ and $\Upsilon_{\alpha, \beta, b}^{2 q}$ are Frechet spaces. We define

$$
\begin{gather*}
\sigma_{b, k}^{\alpha, \beta}(\phi)=\max _{0 \leq i \leq k} \rho_{b, i}^{\alpha, \beta} \tag{14}\\
w_{b, k}^{\alpha, \beta, 2 q}(\phi)=\max _{0 \leq i \leq k} \lambda_{b, i}^{\alpha, \beta, 2 q}(\phi) . \tag{15}
\end{gather*}
$$

Then $\sigma_{b, k}^{\alpha, \beta}(\phi)$ and $w_{b, k}^{\alpha, \beta, 2 q}(\phi)$ define a norm on the spaces $B_{\alpha, \beta, b}$ and $\Upsilon_{\alpha, \beta, b}^{2 q}$ respectively. Following techniques of Zemanian[7], we can write

$$
\begin{align*}
& x^{i}\left(x^{-1} \frac{d}{d x}\right)^{n} x^{2 \beta-1} h_{\alpha, \beta} \phi(x)=\int_{0}^{\infty} y^{2(\alpha-\beta)+2 n+i+1}\left(y^{-1} \frac{d}{d y}\right)^{i}\left(y^{2 \beta-1} \phi(y)\right)(x y)^{-(\alpha-\beta+n)} \\
& \times J_{\alpha-\beta+i+n}(x y) d y \tag{16}
\end{align*}
$$

Theorem 2.1 The Bessel type wavelet transform B_{ψ} is a continuous linear mapping of $B_{\alpha, \beta, b}$ into $\Upsilon_{\alpha, \beta, b}^{2 q}$.

Proof. Let $z=x+i y$ and $(\alpha-\beta) \geq-1 / 2$, the Bessel type wavelet transform B_{ψ} has the representation

$$
\left(B_{\psi} \phi\right)(z, a)=\int_{0}^{b}(z u)^{\alpha+\beta} J_{\alpha-\beta}(z u)\left(h_{\alpha, \beta} \phi\right)(u)\left(\overline{\left.h_{\alpha, \beta} \psi\right)(a u)} d u\right.
$$

$(\alpha-\beta) \geq-1 / 2 \quad$, with $\quad b>0 \quad$ and $\quad\left(h_{\alpha, \beta} \phi\right)(u)\left(h_{\alpha, \beta} \psi\right)(a u) \in L^{2}(0, b) \quad$ if \quad and only if $\left(B_{\psi} \phi\right)(z, a) \in L^{2}(0, \infty), z^{2 \beta-1}\left(B_{\psi} \phi\right)(z, a)$ is an even entire function of z and there exists a constant C such that

$$
\left|\left(B_{\psi} \phi\right)(z, a)\right| \leq C e^{b / y}, \text { for all } z
$$

If $\phi \in B_{\alpha, \beta, b}$, then

$$
\begin{aligned}
& \left(B_{\psi} \phi\right)(z, a)=\int_{0}^{b}(z u)^{\alpha+\beta} J_{\alpha-\beta}(z u)\left(h_{\alpha, \beta} \phi\right)(u)\left(h_{\alpha, \beta} \psi\right)(a u) d u \\
& =h_{\alpha, \beta}\left[\left(h_{\alpha, \beta} \phi\right)(u)\left(h_{\alpha, \beta} \psi\right)(a u)\right](z) .
\end{aligned}
$$

Applying the technique of the Zemanian for fixed a, from (16),

$$
\begin{aligned}
& z^{2 k+2 \beta-1}\left(B_{\psi} \phi\right)(z, a)=\int_{0}^{b} u^{2 k+4 \alpha}\left[\left(u^{-1} D\right)^{2 k} u^{2 \beta-1}\left(\frac{\left.h_{\alpha, \beta} \psi\right)(a u)}{}\left(h_{\alpha, \beta} \phi\right)(u)\right]\right. \\
& \times\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] d u .
\end{aligned}
$$

So that

$$
\begin{aligned}
& \left|e^{-b y^{2 q}} z^{2 k+2 \beta-1}\left(B_{\psi} \phi\right)(z, a)\right| \leq \int_{0}^{b} \mid u^{2 k+4 \alpha}\left[\left(u^{-1} D\right)^{2 k} u^{2 \beta-1}\left(h_{\alpha, \beta} \psi\right)(a u)\left(h_{\alpha, \beta} \phi\right)(u)\right] \\
& \times\left|\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] e^{-b y^{2 q}}\right| d u . \\
& \left.\leq \int_{0}^{b}| |^{2 k+4 \alpha} \sum_{s=0}^{2 k}\binom{2 k}{s}\left(u^{-1} D\right)^{s}\left(h_{\alpha, \beta} \psi\right)(a u)\left(u^{-1} D\right)^{2 k-s} \right\rvert\, \\
& \times\left|u^{2 \beta-1}\left(h_{\alpha, \beta} \phi\right)(u)\right| \sup _{z, u}\left|\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] e^{-b y^{2 q}}\right| d u \\
& \leq \int_{0}^{b} \sum_{s=0}^{b 2}\left(\begin{array}{c}
2 k \\
s
\end{array} \sup _{u}\left|(1+u)^{2 k+4 \alpha}\left(u^{-1} D\right)^{s} \overline{\hat{\psi}(a u)}\right|\right. \\
& \times \sup _{u}\left|\left(u^{-1} D\right)^{2 k-s} u^{2 \beta-1}\left(h_{\alpha, \beta} \phi\right)(u)\right|
\end{aligned}
$$

$$
\times \sup _{z, u}\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] e^{-b y^{2 q}} \mid d u
$$

Applying inequalities (5) and (12), then from the above, we have

$$
\begin{aligned}
& \int_{0}^{b} \sum_{s=0}^{2 k}\binom{2 k}{s}(1+u)^{2 k+4 \alpha} C_{s}(1+u)^{w} \rho_{b, 2 k-s}^{\alpha, \beta}\left(h_{\alpha, \beta} \phi\right) \sup _{z, u}\left|\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] e^{-b y^{2 q}}\right| d u \\
& \left.\leq \sum_{s=0}^{2 k}\binom{2 k}{s} C_{s} \rho_{b, 2 k-s}^{\alpha, \beta}\left(h_{\alpha, \beta} \phi\right) \sup _{z, u}\left[(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u)\right] e^{-b y^{2 k}} \right\rvert\, \int_{0}^{b}(1+u)^{2 k+2(\alpha-\beta)+w+1} d u .
\end{aligned}
$$

We note that for all z such that $|z| \leq 1$

$$
\left|z^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z)\right| \leq \frac{2^{-(\alpha-\beta)} e}{(\alpha-\beta)!}
$$

and for $|z|>1$

$$
\left|z^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z)\right| \leq C(\pi / 2)^{-1}|z|^{2 \beta-1} e^{|\ln m|}
$$

As $|y| \leq|y|^{2 q}$, if $|y| \geq 1$ and $|y| \geq|y|^{2 q}$, if $|y|<1$, then

$$
\begin{aligned}
& \left|(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u) e^{-b y^{2 q}}\right| \leq \frac{2^{-(\alpha-\beta)} e}{(\alpha-\beta)!} e^{-b y^{2 q}},|y| \leq 1 \\
& \leq C(\pi / 2)^{-1}|z|^{2 \beta-1} e^{-b\left(|y|^{2 q}-|y|\right)},|y|>1 .
\end{aligned}
$$

Thus

$$
\left|(z u)^{-(\alpha-\beta)} J_{\alpha-\beta+2 k}(z u) e^{-b y^{2 q}}\right| \leq L_{1} \text {, for } 2 \alpha \geq 0 \text {. }
$$

Therefore

$$
\left|e^{-b y^{2 q}} z^{2 k+2 \beta-1}\left(B_{\psi} \phi\right)(z, a)\right| \leq L_{1} \sum_{s=0}^{2 k}\binom{2 k}{s} C_{s} \rho_{b, 2 k-s}^{\alpha, \beta}\left(h_{\alpha, \beta} \phi\right) .
$$

THE SOBOLEV TYPE SPACE

The Sobolev type space $G_{\alpha, \beta}^{s, p}$ is defined by an equation (11). In the following, we shall make use of the following norm on $G_{\alpha, \beta}^{s, p}((0, \infty) \times(0, \infty))$ in the proof of the boundedness result

$$
\|\phi\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)}=\left(\int_{0}^{\infty} \int_{0}^{\infty} \mid\left(1+\xi^{2}\right)^{s}\left(1+\eta^{2}\right)^{s}\left({\left.\overline{h_{\alpha, \beta}} \phi\right)(\xi, \eta)}^{p} d \xi d \eta\right)^{1 / p}\right.
$$

$\phi \in H_{\alpha, \beta}{ }^{\prime}((0, \infty) \times(0, \infty))$.
Lemma 3.1 Let us assume that for any positive real number $w, \hat{\psi}(x)$ satisfies

$$
\begin{equation*}
\left|\left(x^{-1} \frac{d}{d x}\right)^{l} x^{2 \beta-1} \hat{\psi}(x)\right| \leq C_{l, w}(1+x)^{w-l} \tag{17}
\end{equation*}
$$

for all $l \in \mathrm{~N}_{0}$, then there exists a positive constant C^{\prime} such that

$$
\begin{equation*}
\left|h_{\alpha, \beta}\left[\left(h_{\alpha, \beta} \psi\right)\right](a \xi)\right| \leq C^{\prime}(1+a)^{w+2 l+2 \alpha}\left(1+\xi^{2}\right)^{-l} . \tag{18}
\end{equation*}
$$

Proof. From the Definition (6), we know that

$$
h_{\alpha, \beta}\left[\left(\overline{h_{\alpha, \beta} \psi}\right)\right](a \xi)=\int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)\left(h_{\alpha, \beta} \psi\right)(a x) d x .
$$

So that from [4],

$$
\begin{equation*}
(1+\xi)^{2} h_{\alpha, \beta}\left[\left(h_{\alpha, \beta} \psi\right)\right](a \xi)=\int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)\left(1-\Delta_{\alpha, \beta, x}\right)^{4}\left(h_{\alpha, \beta} \psi\right)(a x) d x \tag{19}
\end{equation*}
$$

for all $\xi, a \in(0, \infty), l \in \mathrm{~N}_{0}$ and $\Delta_{\alpha, \beta, x}$ defined as (7).
Now

$$
\begin{align*}
& \left(1-\Delta_{\alpha, \beta, x}\right)\left(h_{\alpha, \beta} \psi\right)(a x)=\sum_{r=0}^{l}\binom{l}{r}(-1)^{r} \Delta_{\alpha, \beta, x}^{r}\left(h_{\alpha, \beta} \psi\right)(a x) \\
& =\sum_{r=0}^{l}\binom{l}{r}(-1)^{r} \sum_{j=0}^{r} b_{j} x^{2 j+2 \alpha}\left(x^{-1} \frac{d}{d x}\right)^{r+j} \\
& \times\left(x^{2 \beta-1}\left(h_{\alpha, \beta} \psi\right)(a x)\right) \tag{20}
\end{align*}
$$

Hence by (19) and (20), and inequality (17), we have

$$
\begin{aligned}
& \left|h_{\alpha, \beta}\left[\left(h_{\alpha, \beta} \psi\right)\right](a \xi)\right| \leq Q_{\alpha, \beta}(1+a)^{w+2 l+2 \alpha}\left(1+\xi^{2}\right)^{-l} \sum_{r=0}^{l} \sum_{j=0}^{r} b_{j} C_{r+j, w}\binom{l}{r} \\
& \times \int_{0}^{\infty}(1+x)^{2 j+2(\alpha-\beta)+w+1-2 l} d x
\end{aligned}
$$

Choosing $l-j>(\alpha-\beta)+\frac{w}{2}+1$, we conclude that

$$
\left|\hat{h_{\alpha, \beta}}\left[\left(h_{\alpha, \beta} \psi\right)\right](a \xi)\right| \leq C^{\prime}(1+a)^{w+2 l+2 \alpha}\left(1+\xi^{2}\right)^{-l}
$$

Definition 3.1 Let $\left(h_{\alpha, \beta} \psi\right)(a \xi)$ be a wavelet in H^{w} defined by (5), then the Bessel type wavelet transform B_{ψ} defined by

$$
\begin{equation*}
\left(B_{\psi} \phi\right)(y, x)=\int_{0}^{\infty}(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta) \overline{\left(h_{\alpha, \beta} \psi\right)(x \eta)}\left(h_{\alpha, \beta} \phi\right)(\eta) d \eta \tag{21}
\end{equation*}
$$

exists for $\phi \in H_{\alpha, \beta}(0, \infty)$.
Theorem 3.1 For any wavelet $h_{\alpha, \beta} \psi \in H^{w}$, the Bessel type wavelet transform $\left(B_{\psi} \phi\right)(y, x)$ admits the representation

$$
\begin{equation*}
\left(B_{\psi} \phi\right)(y, x)=\int_{0}^{\infty} \int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta)\left(\overline{\left.h_{\alpha, \beta} \psi\right)(\xi \eta)}\left(h_{\alpha, \beta} \phi\right)(\eta) d \xi d \eta\right. \tag{22}
\end{equation*}
$$

where $\phi \in H_{\alpha, \beta}(0, \infty)$.
Proof. From definition (3.1)

$$
\begin{aligned}
& \left(B_{\psi} \phi\right)(y, x)=\int_{0}^{\infty}(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta)\left(\overline{\left.h_{\alpha, \beta} \psi\right)(x \eta)}\left(h_{\alpha, \beta} \phi\right)(\eta) d \eta\right. \\
& =\int_{0}^{\infty}(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta)\left[\int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)\left(\hat{\hat{h}_{\alpha, \beta} \psi}\right)(\xi \eta) d \xi\right]\left(h_{\alpha, \beta} \phi\right)(\eta) d \eta \\
& =\int_{0}^{\infty} \int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta)\left(\hat{\left.\hat{h}_{\alpha, \beta} \psi\right)(\xi \eta)}\left(h_{\alpha, \beta} \phi\right)(\eta) d \xi d \eta\right.
\end{aligned}
$$

The last integral exists because $\left(h_{\alpha, \beta} \phi\right)(\eta) \in H_{\alpha, \beta}(0, \infty)$ and $\left(\hat{h}_{\alpha, \beta} \psi\right)(\xi \eta)$ satisfies the inequality (18).
Corollary 3.1 For any basic wavelet $h_{\alpha, \beta} \psi \in H^{w}$, the Bessel type wavelet transform $h_{\alpha, \beta}\left|B_{\psi} \phi\right|(\xi, \eta)$ admits the representation

$$
\begin{equation*}
h_{\alpha, \beta}\left[B_{\psi} \phi\right](\xi, \eta)=\left(\widehat{\left.\hat{h}_{\alpha, \beta} \psi\right)(\xi \eta)}\left(\hat{h}_{\alpha, \beta} \phi\right)(\eta)\right. \tag{23}
\end{equation*}
$$

where $\phi \in H_{\alpha, \beta}(0, \infty)$.
Proof. The right hand side of (23)

$$
\begin{aligned}
& \left(\hat{h}_{\alpha, \beta} \psi\right)(\xi \eta)\left(\hat{h}_{\alpha, \beta} \phi\right)(\eta)=h_{\alpha, \beta}\left[\left(\overline{h_{\alpha, \beta}} \psi\right)(\xi \eta)\right] h_{\alpha, \beta}\left[\left(h_{\alpha, \beta} \phi\right)(\eta)\right] \\
& =\left[\int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)\left(h_{\alpha, \beta} \psi\right)(x \eta) d x\right] \\
& \times\left[\int_{0}^{\infty}(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta)\left(h_{\alpha, \beta} \phi\right)(y) d y\right] \\
& =\int_{0}^{\infty} \int_{0}^{\infty}(x \xi)^{\alpha+\beta} J_{\alpha-\beta}(x \xi)(y \eta)^{\alpha+\beta} J_{\alpha-\beta}(y \eta) \overleftarrow{\left(h_{\alpha, \beta} \psi\right)(x \eta)} \\
& \times\left(h_{\alpha, \beta} \phi\right)(y) d x d y \\
& \left.=h_{\alpha, \beta} \mid B_{\psi} \phi\right)(\xi, \eta) .
\end{aligned}
$$

Theorem 3.2 Let $h_{\alpha, \beta} \psi \in H^{w}$ and $\left(B_{\psi} \phi\right)(x, y)$ be the Bessel type wavelet transform then there exists $D>0$ such that for $w \in(0, \infty)$ and $l \in \mathrm{~N}_{0}$,

$$
\left\|\left(B_{\psi} \phi\right)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq D\left\|\left(h_{\alpha, \beta} \phi\right)\right\|_{G_{\alpha, \beta}^{s+(w+2 l+2 \alpha) 2, p}(0, \infty)}
$$

for all $\phi \in H_{\alpha, \beta}(0, \infty)$.

Proof. Using Lemma (3.1), we have
$)^{y p}$.

We note that

$$
(1+\eta)^{w+2 l+2 \alpha} \leq 2^{(w+2 l+2 \alpha) / 2}\left(1+\eta^{2}\right)^{(w+2 l+2 \alpha) / 2}, w \geq 0
$$

and

$$
(1+\eta)^{w+2 l+2 \alpha} \leq\left(1+\eta^{2}\right)^{(w+2 l+2 \alpha) / 2}, w<0 .
$$

Therefore

$$
(1+\eta)^{w+2 l+2 \alpha} \leq \max \left(1,2^{(w+2 l+2 \alpha) / 2}\right)\left(1+\eta^{2}\right)^{(w+2 l+2 \alpha) / 2} .
$$

Hence

$$
\|\left(B_{\psi} \phi\right)| |_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq C^{\prime}\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\left(1+\xi^{2}\right)^{s-l} \max \left(1,2^{(w+2 l+2 \alpha) / 2}\right)\left(1+\eta^{2}\right)^{s+(w+2 l+2 \alpha) / 2}\left(\hat{h}_{\alpha, \beta} \phi\right)(\eta)\right|^{p} d \xi d \eta\right)^{1 / p} \leq C^{\prime \prime}\left(\int_{0}^{\infty} \mid(1+\right.
$$

where $C^{\prime \prime}$ is certain constant. The ξ integral is convergent as l can be chosen large enough so that

$$
\left\|\left(B_{\psi} \phi\right)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq D\left\|\left(h_{\alpha, \beta} \phi\right)\right\|_{\left.G_{\alpha, \beta}^{s+(}+2 l+2 \alpha\right) 2, p}(0, \infty) .
$$

PRODUCT OF BESSEL TYPE WAVELET TRANSFORMS

Let $B_{\psi_{1}}$ and $B_{\psi_{2}}$ be two Bessel type wavelet transforms of $\phi \in H_{\alpha, \beta}(0, \infty)$ defined as

$$
\begin{equation*}
\left(B_{\psi_{1}} \phi\right)(b, a)=B_{1}(b, a)=\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \overline{\hat{\psi}_{1}(a u)} \hat{\phi}(u) d u, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B_{\psi_{2}} \phi\right)(d, c)=B_{2}(d, c)=\int_{0}^{\infty}(d u)^{\alpha+\beta} J_{\alpha-\beta}(d u) \overline{\hat{\psi}_{2}(c u)} \hat{\phi}(u) d u . \tag{25}
\end{equation*}
$$

Then their product $B_{\psi_{1}} \circ B_{\psi_{2}}$ (or $B_{1} \circ B_{2}$) is defined by

$$
\begin{align*}
& B(b, a, c)=\left(B_{1} \circ B_{2}\right)(b, a, c) \\
& =\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \overline{\hat{\psi}_{1}(a u)} h_{\alpha, \beta}\left[B_{\psi_{2}} \phi\right](u, c) d u \tag{26}\\
& =\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \overline{\hat{\psi}_{1}(a u)} \overline{\hat{\psi}_{2}(c u) \hat{\phi}(u) d u} \tag{27}\\
& =\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \chi(a, c, u) \hat{\phi}(u) d u,
\end{align*}
$$

where $\hat{\phi}$ denotes the Hankel type transformation of ϕ and $\chi(a, c, u)=\overline{\hat{\psi}_{1}(a u)} \overline{\hat{\psi}_{2}(c u)}$, provided the integral is convergent.

Theorem 4.1 Let $\overline{\hat{\psi}_{1}(a u)} \in H^{w_{1}}$ and $\overline{\hat{\psi}_{2}(a u)} \in H^{w_{2}}$, then for constant $D>0$ and $w_{1}, w_{2} \in(0, \infty)$,

$$
\left\|\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)(b, a, c)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq D\|\hat{\phi}\|_{G_{\alpha, \beta}^{s+\left(w_{1}+w_{2}\right) 火, p}(0, \infty)} .
$$

Proof. By definition (26), we have

$$
\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)(b, a, c)=\int_{0}^{\infty}(b u)^{\alpha+\beta} J_{\alpha-\beta}(b u) \overline{\hat{\psi}_{1}(a u)} h_{\alpha, \beta}\left[B_{\psi_{2}} \phi\right](u, c) d u .
$$

From (27), it follows that $\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)$ has Hankel type transform equal to $\left[\overline{\hat{\psi}_{1}(a u)} \overline{\hat{\psi}_{2}(a u)} \hat{\phi}(u)\right]$.
Therefore

$$
\left\|\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)(b, a, c)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)}=\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\left(1+u^{2}\right)^{s}\left(1+a^{2}\right)^{s} \overline{\hat{\psi}_{1}(a u)} \overline{\hat{\psi}_{2}(a u)} \hat{\phi}(u) d u\right|^{p} d a d u\right)^{1 / p} .
$$

Since from (5)

$$
\begin{aligned}
& \left|\hat{\psi}_{1}(a u)\right| \leq C_{w_{1}, l}(1+a)^{-l}(1+u)^{w_{1}} \\
& \leq C_{w_{1}, l} \max \left(1,2^{-/ / 2}\right)\left(1+a^{2}\right)^{-/ / 2} \max \left(1,2^{w_{1} / 2}\right)\left(1+u^{2}\right)^{w_{1} / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\hat{\psi}_{2}(a u)\right| \leq C_{w_{2}, l}(1+a)^{-l}(1+u)^{w_{2}} \\
& \leq C_{w_{2}, l} \max \left(1,2^{-l / 2}\right)\left(1+a^{2}\right)^{-l / 2} \max \left(1,2^{w_{2} / 2}\right)\left(1+u^{2}\right)^{w_{2} / 2} .
\end{aligned}
$$

Therefore

$$
\left\|\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\left(1+u^{2}\right)^{s}\left(1+a^{2}\right)^{s} C_{w_{1}, l} C_{w_{2}, l} l^{\prime}\left(1+u^{2}\right)^{\left(w_{1}+w_{2}\right) / 2}\left(1+a^{2}\right)^{-l} \hat{\phi}(u)\right|^{p} d a d u\right)^{1 / p} \leq C_{w_{1}, w_{2}, l}\left(\int\right.
$$

where $C_{w_{1}, w_{2}, l}$ is certain positive constant.
The a - integral can be made convergent by choosing l sufficiently large, so that

$$
\left\|\left(B_{\psi_{1}} B_{\psi_{2}} \phi\right)\right\|_{\left.G_{\alpha, \beta}^{s, p}(0, \infty) \times(0, \infty)\right)} \leq D\|\hat{\phi}\|_{G_{\alpha, \beta}^{s+\left(w_{1}+w_{2}\right) / 2, p}},
$$

where D is positive constant.

REFERENCES

[1] W. Y. Lee, On the Cauchy problem of the differential operator, Proc. Amer. Math. Soc., 51(1) (1975), 149-154.
[2] R.S. Pathak, Integral transforms of generalized functions and their applications, Gordon and Breach Publishers, Amsterdam (1997).
[3] R.S. Pathak and M.M. Dixit, Bessel wavelet transform on certain function and distribution spaces, Journal of Analysis and Applications, 1(2003), 65-83.
[4] A. Prasad, The generalized pseudo-differential operator on some Gevrey spaces, International Journal of Mathematical Sciences, 5(1)(2006), 121-133.
[5] K. Trimeche, Generalized wavelets and hypergroups, Gordon and Breach Science Publishers, Amsterdam (1997).
[6] A.H. Zemanian, The Hankel transform of certain distributions of rapid growth, SIAM J. Appl. Math., 14(1996), 678-690.
[7] A.H. Zemanian, Generalized integral transformations, Interscience Publishers, New York (1968).

