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Abstract: In this paper, the continuity of the Bessel type wavelet transform B  of the function   in terms of a mother wavelet   is 

investigeted on certain distribution spaces when the Hankel type transform of   defined by )(),(ˆ 2



 RCyx . Finally a sobolev type 

space boundedness result is obtained. 
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INTRODUCTION 
 The Hankel type transformation is defined by  

   )(0,,)()()(=)(=)(ˆ
0

, 




 xdyyxyJxyxhx  


  (1) 

where )(xJ   represents the Bessel type function of the first kind and order   . Throughout this 

paper we shall assume that 1/2)(   and )(0,1 L . The inversion formula for (1) [[2], p.239] is 

given by  

   )(0,,)()()(=)( ,
0






 ydxxhxyJxyy  
  (2) 

 Zemanian[6] has extended the above transformation to distributions. For every )(0,)(  , he 

introduced the space )(0,, H  consisting of all infinitely differentiable functions   defined on )(0, , 

such that for all 0, Nkm , the quantities  

 .<)(sup= 121

)(0,

,

, 






 



xx
dx

d
xx

k

m

x
km    (3) 

 Using theory of  ,H  space of Zemanian[6], Pathak and Dixit[3] investigated the Bessel type wavelet 

transform B  defined as follows:  
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 where   )(=)(ˆ , uhu   . 

Let us assume that for every real number  , ̂  satisfies  
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 for all 0,, Nlba , where 0>,, lbaC  is a constant and ̂  denotes the Hankel type transform of the basic 

wavelet  . The class of all such wavelet ̂  is denoted by H . 
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 This permits us to define the Hankel type transform with respect to x  of )(ˆ ax   

      .)()()(=)()( ,
0

,, dxaxhxJxahh  


 




  (6) 

 We follow the notations and terminology of [2, 4, 5, 7]. 
The differential operator 

x,,  is defined by  

 12412

,, =  
 xDxDx xxx  

 xDxx 3441)4( 1)22(22)21)(4(2=      

 .21)22(2

xDx    (7) 

 If we set 
24
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   in (7), it reduces to 
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 which 

is studied in Zemanian[7]. 
 From [2, 4], we know that for any  ,H ,  
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 also from [2], we have  
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 where jb  are constants depending only on   .  

Definition 1.1 A tempered distribution )(0,',   H  is said to belong to the Sobolev space 

 <),1(0,)(,,,

, psG ps  , if its Hankel type transform  ,h  coresponds to a locally integrable 

function over )(0,  such that  
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THE BESSEL TYPE WAVELET TRANSFORM 
 Lee[1] has defined the space bB ,,  and q

b

2

,,  as follows:  

Definition 2.1 We say that bB ,,  if   is smooth function 0=)(x  for bx >  and  

 0,1,2,=,<)(sup=)( 121

)(0,

,

, kxx
dx

d
x

k

x
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   (12) 

 where 0>b  is a constant and )(    is a real number.   

  

Definition 2.2 For each q

bq 2

,,,1,2,3,=   if 12z  is an even entire function and  

 0,1,2,=,<)(sup=)( 122
2
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,2,

, kzze q
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q
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  (13) 

 where   0>,= , bh   is constant and )(    is a real number.   

 The topology of the spaces bB ,,  and q

b

2

,,  are generated by the seminorms 

0=

,

, }{ kkb

  and 


0=

,2,

, }{ k

q

kb

  respectively. From Definitions (2.1) and (2.2), it follows that bB ,,  and q

b

2

,,  are Frechet 

spaces. We define  
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 Then )(,

,  
kb  and )(,2,

,  q

kbw  define a norm on the spaces bB ,,  and q

b

2

,,  respectively. Following 

techniques of Zemanian[7], we can write  
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Theorem 2.1 The Bessel type wavelet transform B  is a continuous linear mapping of bB ,,  into 
q

b

2

,, .  

  

Proof. Let iyxz =  and 1/2)(  , the Bessel type wavelet transform B  has the 

representation  
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such that  
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 Applying the technique of the Zemanian for fixed a , from (16),  
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 Applying inequalities (5) and (12), then from the above, we have  
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 We note that for all z  such that 1|| z   
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THE SOBOLEV TYPE SPACE 
 The Sobolev type space psG ,

,  is defined by an equation (11). In the following, we shall make use of the 

following norm on  )(0,)(0,,

, psG   in the proof of the boundedness result  
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Lemma 3.1 Let us assume that for any positive real number w , )(ˆ x  satisfies  
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 for all 0Nl , then there exists a positive constant C  such that  
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Proof. From the Definition (6), we know that  
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So that from [4],  
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 Hence by (19) and (20), and inequality (17), we have  
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w

jl  , we conclude that  
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Definition 3.1 Let   )(,  ah  be a wavelet in wH  defined by (5), then the Bessel type wavelet 

transform B  defined by  

        


 dhxhyJyxyB )()()()(=),( ,,
0






  (21) 

 exists for )(0,,   H .   

  

Theorem 3.1 For any wavelet wHh  , , the Bessel type wavelet transform   ),( xyB   admits 

the representation  
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 where )(0,,   H .  

  

Proof. From definition (3.1)  
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 The last integral exists because   )(0,)( ,,    Hh  and   )(ˆ
, h  satisfies the inequality (18).  

  

Corollary 3.1 For any basic wavelet wHh  , , the Bessel type wavelet transform   ),(,  Bh  

admits the representation  

       )(ˆ)(ˆ=),( ,,,   hhBh  (23) 
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 where )(0,,   H .  

  

Proof. The right hand side of (23)  
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Theorem 3.2 Let wHh  ,  and   ),( yxB   be the Bessel type wavelet transform then there 

exists 0>D  such that for )(0,w  and 0Nl ,  
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Proof. Using Lemma (3.1), we have 
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where C   is certain constant. The   integral is convergent as l  can be chosen large enough so 

that  
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PRODUCT OF BESSEL TYPE WAVELET TRANSFORMS 
 Let 

1
B  and 

2
B  be two Bessel type wavelet transforms of )(0,,   H  defined as  
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Proof. By definition (26), we have  
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From (27), it follows that  
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 is certain positive constant. 

The a  integral can be made convergent by choosing l  sufficiently large, so that  
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where D  is positive constant.  
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